I have designed an algorithm-SHA3 algorithm in 2 ways - combinational and sequential. The sequential design that is with clock when synthesized giving design summary as
Minimum clock period 1.275 ns and Maximum frequency 784.129 MHz.
While the combinational one which is designed without clock and has been put between input and output registers is giving synthesis report as
Minimum clock period 1701.691 ns and Maximum frequency 0.588 MHz.
so i want to ask is it correct that combinational will have lesser frequency than sequential?
As far as theory is concerned combinational design should be faster than sequential. But the simulation results I m getting for sequential is after 30 clock cycles where as combinational there is no delay in the output as there is no clock. In this way combinational is faster as we are getting instant output but why frequency of operation of combinational one is lesser than sequential one. Why this design is slow can any one explain please? The design has been simulated in Xilinx ISE
Now I have applied pipe-lining to the combinational logic by inserting the registers in between the 5 main blocks which are doing the computation. And these registers are controlled by clock so now this pipelined design is giving design summary as
clock period 1.575 ns and freq 634.924 MHz
Min period 1.718 ns and freq 581.937.
So now this 1.575 ns is the delay between any of the 2 registers , its not the propagation delay of entire algorithm so how can i calculate propagation delay of entire pipelined algorithm.