I read the C++ version of this question but didn't really understand it.
Can someone please explain clearly if it can be done and how?
I read the C++ version of this question but didn't really understand it.
Can someone please explain clearly if it can be done and how?
In C# 7 and above, see this answer.
In previous versions, you can use .NET 4.0+'s Tuple:
For Example:
public Tuple<int, int> GetMultipleValue()
{
return Tuple.Create(1,2);
}
Tuples with two values have Item1
and Item2
as properties.
Now that C# 7 has been released, you can use the new included Tuples syntax
(string, string, string) LookupName(long id) // tuple return type
{
... // retrieve first, middle and last from data storage
return (first, middle, last); // tuple literal
}
which could then be used like this:
var names = LookupName(id);
WriteLine($"found {names.Item1} {names.Item3}.");
You can also provide names to your elements (so they are not "Item1", "Item2" etc). You can do it by adding a name to the signature or the return methods:
(string first, string middle, string last) LookupName(long id) // tuple elements have names
or
return (first: first, middle: middle, last: last); // named tuple elements in a literal
They can also be deconstructed, which is a pretty nice new feature:
(string first, string middle, string last) = LookupName(id1); // deconstructing declaration
Check out this link to see more examples on what can be done :)
You can use three different ways
1. ref / out parameters
using ref:
static void Main(string[] args)
{
int a = 10;
int b = 20;
int add = 0;
int multiply = 0;
Add_Multiply(a, b, ref add, ref multiply);
Console.WriteLine(add);
Console.WriteLine(multiply);
}
private static void Add_Multiply(int a, int b, ref int add, ref int multiply)
{
add = a + b;
multiply = a * b;
}
using out:
static void Main(string[] args)
{
int a = 10;
int b = 20;
int add;
int multiply;
Add_Multiply(a, b, out add, out multiply);
Console.WriteLine(add);
Console.WriteLine(multiply);
}
private static void Add_Multiply(int a, int b, out int add, out int multiply)
{
add = a + b;
multiply = a * b;
}
2. struct / class
using struct:
struct Result
{
public int add;
public int multiply;
}
static void Main(string[] args)
{
int a = 10;
int b = 20;
var result = Add_Multiply(a, b);
Console.WriteLine(result.add);
Console.WriteLine(result.multiply);
}
private static Result Add_Multiply(int a, int b)
{
var result = new Result
{
add = a * b,
multiply = a + b
};
return result;
}
using class:
class Result
{
public int add;
public int multiply;
}
static void Main(string[] args)
{
int a = 10;
int b = 20;
var result = Add_Multiply(a, b);
Console.WriteLine(result.add);
Console.WriteLine(result.multiply);
}
private static Result Add_Multiply(int a, int b)
{
var result = new Result
{
add = a * b,
multiply = a + b
};
return result;
}
3. Tuple
Tuple class
static void Main(string[] args)
{
int a = 10;
int b = 20;
var result = Add_Multiply(a, b);
Console.WriteLine(result.Item1);
Console.WriteLine(result.Item2);
}
private static Tuple<int, int> Add_Multiply(int a, int b)
{
var tuple = new Tuple<int, int>(a + b, a * b);
return tuple;
}
C# 7 Tuples
static void Main(string[] args)
{
int a = 10;
int b = 20;
(int a_plus_b, int a_mult_b) = Add_Multiply(a, b);
Console.WriteLine(a_plus_b);
Console.WriteLine(a_mult_b);
}
private static (int a_plus_b, int a_mult_b) Add_Multiply(int a, int b)
{
return(a + b, a * b);
}
You cannot do this in C#. What you can do is have a out
parameter or return your own class (or struct if you want it to be immutable).
public int GetDay(DateTime date, out string name)
{
// ...
}
public DayOfWeek GetDay(DateTime date)
{
// ...
}
public class DayOfWeek
{
public int Day { get; set; }
public string Name { get; set; }
}
Previous poster is right. You cannot return multiple values from a C# method. However, you do have a couple of options:
The pros and cons here are often hard to figure out. If you return a structure, make sure it's small because structs are value type and passed on the stack. If you return an instance of a class, there are some design patterns here that you might want to use to avoid causing problems - members of classes can be modified because C# passes objects by reference (you don't have ByVal like you did in VB).
Finally you can use output parameters but I would limit the use of this to scenarios when you only have a couple (like 3 or less) of parameters - otherwise things get ugly and hard to maintain. Also, the use of output parameters can be an inhibitor to agility because your method signature will have to change every time you need to add something to the return value whereas returning a struct or class instance you can add members without modifying the method signature.
From an architectural standpoint I would recommend against using key-value pairs or dictionaries. I find this style of coding requires "secret knowledge" in code that consumes the method. It must know ahead of time what the keys are going to be and what the values mean and if the developer working on the internal implementation changes the way the dictionary or KVP is created, it could easily create a failure cascade throughout the entire application.
In C#7 There is a new Tuple
syntax:
static (string foo, int bar) GetTuple()
{
return ("hello", 5);
}
You can return this as a record:
var result = GetTuple();
var foo = result.foo
// foo == "hello"
You can also use the new deconstructor syntax:
(string foo) = GetTuple();
// foo == "hello"
Be careful with serialisation however, all this is syntactic sugar - in the actual compiled code this will be a Tuple<string, int>
(as per the accepted answer) with Item1
and Item2
instead of foo
and bar
. That means that serialisation (or deserialisation) will use those property names instead.
So, for serialisation declare a record class and return that instead.
Also new in C#7 is an improved syntax for out
parameters. You can now declare the out
inline, which is better suited in some contexts:
if(int.TryParse("123", out int result)) {
// Do something with result
}
However, mostly you'll use this in .NET's own libraries, rather than in you own functions.
There is many way; but if you don't want to create a new Object or structure or something like this you can do like below after C# 7.0 :
(string firstName, string lastName) GetName(string myParameter)
{
var firstName = myParameter;
var lastName = myParameter + " something";
return (firstName, lastName);
}
void DoSomethingWithNames()
{
var (firstName, lastName) = GetName("myname");
}
Some answers suggest using out parameters but I recommend not using this due to they don’t work with async methods. See this for more information.
Other answers stated using Tuple, which I would recommend too but using the new feature introduced in C# 7.0.
(string, string, string) LookupName(long id) // tuple return type
{
... // retrieve first, middle and last from data storage
return (first, middle, last); // tuple literal
}
var names = LookupName(id);
WriteLine($"found {names.Item1} {names.Item3}.");
Further information can be found here.
There are several ways to do this. You can use ref
parameters:
int Foo(ref Bar bar) { }
This passes a reference to the function thereby allowing the function to modify the object in the calling code's stack. While this is not technically a "returned" value it is a way to have a function do something similar. In the code above the function would return an int
and (potentially) modify bar
.
Another similar approach is to use an out
parameter. An out
parameter is identical to a ref
parameter with an additional, compiler enforced rule. This rule is that if you pass an out
parameter into a function, that function is required to set its value prior to returning. Besides that rule, an out
parameter works just like a ref
parameter.
The final approach (and the best in most cases) is to create a type that encapsulates both values and allow the function to return that:
class FooBar
{
public int i { get; set; }
public Bar b { get; set; }
}
FooBar Foo(Bar bar) { }
This final approach is simpler and easier to read and understand.
No, you can't return multiple values from a function in C# (for versions lower than C# 7), at least not in the way you can do it in Python.
However, there are a couple alternatives:
You can return an array of type object with the multiple values you want in it.
private object[] DoSomething()
{
return new [] { 'value1', 'value2', 3 };
}
You can use out
parameters.
private string DoSomething(out string outparam1, out int outparam2)
{
outparam1 = 'value2';
outparam2 = 3;
return 'value1';
}
In C# 4, you will be able to use built-in support for tuples to handle this easily.
In the meantime, there are two options.
First, you can use ref or out parameters to assign values to your parameters, which get passed back to the calling routine.
This looks like:
void myFunction(ref int setMe, out int youMustSetMe);
Second, you can wrap up your return values into a structure or class, and pass them back as members of that structure. KeyValuePair works well for 2 - for more than 2 you would need a custom class or struct.
Here are basic Two
methods:
1) Use of 'out
' as parameter
You can use 'out' for both 4.0 and minor versions too.
Example of 'out':
using System;
namespace out_parameter
{
class Program
{
//Accept two input parameter and returns two out value
public static void rect(int len, int width, out int area, out int perimeter)
{
area = len * width;
perimeter = 2 * (len + width);
}
static void Main(string[] args)
{
int area, perimeter;
// passing two parameter and getting two returning value
Program.rect(5, 4, out area, out perimeter);
Console.WriteLine("Area of Rectangle is {0}\t",area);
Console.WriteLine("Perimeter of Rectangle is {0}\t", perimeter);
Console.ReadLine();
}
}
}
Output:
Area of Rectangle is 20
Perimeter of Rectangle is 18
*Note:*The out
-keyword describes parameters whose actual variable locations are copied onto the stack of the called method, where those same locations can be rewritten. This means that the calling method will access the changed parameter.
2) Tuple<T>
Example of Tuple:
Returning Multiple DataType values using Tuple<T>
using System;
class Program
{
static void Main()
{
// Create four-item tuple; use var implicit type.
var tuple = new Tuple<string, string[], int, int[]>("perl",
new string[] { "java", "c#" },
1,
new int[] { 2, 3 });
// Pass tuple as argument.
M(tuple);
}
static void M(Tuple<string, string[], int, int[]> tuple)
{
// Evaluate the tuple's items.
Console.WriteLine(tuple.Item1);
foreach (string value in tuple.Item2)
{
Console.WriteLine(value);
}
Console.WriteLine(tuple.Item3);
foreach (int value in tuple.Item4)
{
Console.WriteLine(value);
}
}
}
Output
perl
java
c#
1
2
3
NOTE: Use of Tuple is valid from Framework 4.0 and above.Tuple
type is a class
. It will be allocated in a separate location on the managed heap in memory. Once you create the Tuple
, you cannot change the values of its fields
. This makes the Tuple
more like a struct
.
A method taking a delegate can provide multiple values to the caller. This borrows from my answer here and uses a little bit from Hadas's accepted answer.
delegate void ValuesDelegate(int upVotes, int comments);
void GetMultipleValues(ValuesDelegate callback)
{
callback(1, 2);
}
Callers provide a lambda (or a named function) and intellisense helps by copying the variable names from the delegate.
GetMultipleValues((upVotes, comments) =>
{
Console.WriteLine($"This post has {upVotes} Up Votes and {comments} Comments.");
});
From this article, you can use three options as posts above said.
KeyValuePair is quickest way.
out is at the second.
Tuple is the slowest.
Anyway, this is depend on what is the best for your scenario.
Just use in OOP manner a class like this:
class div
{
public int remainder;
public int quotient(int dividend, int divisor)
{
remainder = ...;
return ...;
}
}
The function member returns the quotient which most callers are primarily interested in. Additionally it stores the remainder as a data member, which is easily accessible by the caller afterwards.
This way you can have many additional "return values", very useful if you implement database or networking calls, where lots of error messages may be needed but only in case an error occurs.
I entered this solution also in the C++ question that OP is referring to.
Future version of C# is going to include named tuples. Have a look at this channel9 session for the demo https://channel9.msdn.com/Events/Build/2016/B889
Skip to 13:00 for the tuple stuff. This will allow stuff like:
(int sum, int count) Tally(IEnumerable<int> list)
{
// calculate stuff here
return (0,0)
}
int resultsum = Tally(numbers).sum
(incomplete example from video)
You could use a dynamic object. I think it has better readability than Tuple.
static void Main(string[] args){
var obj = GetMultipleValues();
Console.WriteLine(obj.Id);
Console.WriteLine(obj.Name);
}
private static dynamic GetMultipleValues() {
dynamic temp = new System.Dynamic.ExpandoObject();
temp.Id = 123;
temp.Name = "Lorem Ipsum";
return temp;
}
Ways to do it:
1) KeyValuePair (Best Performance - 0.32 ns):
KeyValuePair<int, int> Location(int p_1, int p_2, int p_3, int p_4)
{
return new KeyValuePair<int,int>(p_2 - p_1, p_4-p_3);
}
2) Tuple - 5.40 ns:
Tuple<int, int> Location(int p_1, int p_2, int p_3, int p_4)
{
return new Tuple<int, int>(p_2 - p_1, p_4-p_3);
}
3) out (1.64 ns) or ref 4) Create your own custom class/struct
ns -> nanoseconds
Reference: multiple-return-values.