Currently I am working with the dataset predictions. In this data I have converted clear character type variables into factors because I think factors work better than characters for glmtree() code (tell me if I am wrong with this):
> str(predictions)
'data.frame': 43804 obs. of 14 variables:
$ month : Factor w/ 7 levels "01","02","03",..: 6 6 6 6 1 1 2 2 3 3 ...
$ pred : num 0.21 0.269 0.806 0.945 0.954 ...
$ treatment : Factor w/ 2 levels "0","1": 1 1 2 2 2 2 2 2 2 2 ...
$ type : Factor w/ 4 levels "S","MS","ML",..: 1 1 4 4 4 4 4 4 4 4 ...
$ i_mode : Factor w/ 143 levels "AAA","ABC","CBB",..: 28 28 104 104 104 104 104 104 104 104 ...
$ r_mode : Factor w/ 29 levels "0","5","8","11",..: 4 4 2 2 2 2 2 2 2 2 ...
$ in_mode: Factor w/ 22 levels "XY",..: 11 11 6 6 6 6 6 6 6 6 ...
$ v_mode : Factor w/ 5 levels "1","3","4","7",..: 1 1 1 1 1 1 1 1 1 1 ...
$ di : num 1157 1157 1945 1945 1945 ...
$ cont : Factor w/ 5 levels "AN","BE",..: 2 2 2 2 2 2 2 2 2 2 ...
$ hk : num 0.512 0.512 0.977 0.977 0.941 ...
$ np : num 2 2 2 2 2 2 2 2 2 2 ...
$ hd : num 1 1 0.408 0.408 0.504 ...
$ nd : num 1 1 9 9 9 9 7 7 9 9 ...
I want to estimate a recursive partitioning model of this kind:
library("partykit")
glmtr <- glmtree(formula = pred ~ treatment + 1 | (month+type+i_mode+r_mode+in_mode+v_mode+di+cont+np+nd+hd+hk),
data = predictions,
maxdepth=6,
family = quasibinomial)
My data does not have any NA. However, the following error arises (even after changing characters by factors):
Error in matrix(0, nrow = mi, ncol = nl) :
invalid 'nrow' value (too large or NA)
In addition: Warning message:
In matrix(0, nrow = mi, ncol = nl) :
NAs introduced by coercion to integer range
Any clue?
Thank you