Is there a way to determine number of nodes and hidden layers based on shape of the data? Also, is there a way to determine the best activation function based on the topic?
For example, Im making model for fake news prediction. My features are number of words in text, number of words in title, number of questions, number of capital letters etc. My dataset has 22 features and around 35000 rows. My output should be 0 or 1.
Based on that, how many layers and nodes should I use and what activation functions are the best for this?
This is my net:
model = Sequential()
model.add(Dense(100, input_dim = features.shape[1], activation = 'relu')) # input layer requires input_dim param
model.add(Dense(100, activation = 'relu'))
model.add(Dense(100, activation = 'relu'))
model.add(Dropout(0.1))
model.add(Dense(1, activation='sigmoid')) # sigmoid instead of relu for final probability between 0 and 1
sgd = optimizers.SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss="mean_squared_error", optimizer=sgd, metrics=['accuracy'])
# call the function to fit to the data training the network)
model.fit(x_train, y_train, epochs = 10, shuffle = True, batch_size=32, validation_data=(x_test, y_test), verbose=1)
scores = model.evaluate(features, results)
print(model.metrics_names[1], scores[1]*100)