What's wrong with this code? faces = datasets.fetch_olivetti_faces() X_train, X_test, y_train, y_test = train_test_split(faces.data,faces.target, test_size=0.2) X_train = X_train.reshape(-1,32 ,32 ,1) X_test = X_test.reshape(-1,32 , 32 ,1) # Normalize the data X_train = X_train.astype('float32') X_test = X_test.astype('float32') X_train /= 255.0 X_test /= 255.0 # One hot classes=40 y_train = keras.utils.to_categorical(y_train, classes) y_test = keras.utils.to_categorical(y_test, classes) #Build LetNet model with Keras def LetNet(width, height, depth, classes): # initialize the model model = Sequential() # first layer, convolution and pooling model.add(Conv2D(input_shape=(width, height, depth), kernel_size=(5, 5), filters=6, strides=(1,1), activation='tanh')) model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2))) # second layer, convolution and pooling model.add(Conv2D(input_shape=(width, height, depth), kernel_size=(5, 5), filters=16, strides=(1,1), activation='tanh')) model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2))) # Fully connection layer model.add(Flatten()) model.add(Dense(120,activation = 'tanh')) model.add(Dense(84,activation = 'tanh')) # softmax classifier model.add(Dense(classes)) model.add(Activation("softmax")) return model LetNet_model = LetNet(32,32,1,40) LetNet_model.summary() #Strat training LetNet_model.compile(optimizer=Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-08),loss = 'categorical_crossentropy',metrics=['accuracy']) History = LetNet_model.fit(X_train, y_train, epochs=5, batch_size=32,validation_data=(X_test, y_test))
0
votes
X_train.shape
,y_train.shape
? – Zabir Al Nazi