when i tried to add dropout to the keras model it cause OOM error: tensorflow.python.framework.errors_impl.ResourceExhaustedError: OOM when allocating tensor with shape[128,128,176,216]...
the model suppose to be autoencoder that produce super resolution x4.
autoencoder = Sequential()
autoencoder.add(Conv2D(64*comlex, (3, 3), activation='relu',
padding='same', input_shape=x_train[0].shape))
autoencoder.add(Dropout(0.25))
autoencoder.add(UpSampling2D((2, 2)))
autoencoder.add(Conv2D(64*comlex, (3, 3), activation='relu', padding='same'))
# autoencoder.add(Dropout(0.25))
autoencoder.add(UpSampling2D((2, 2)))
autoencoder.add(Conv2D(3, (3, 3), activation='sigmoid', padding='same'))
autoencoder.compile(optimizer='adam', loss='binary_crossentropy',metrics=['accuracy'])
the line in comment causes OOM.
why does dropout take so much memory?