I am trying to approximate a function that smoothly maps five inputs to a single probability using Keras, but seem to have hit a limit. A similar problem was posed here (Keras Regression to approximate function (goal: loss < 1e-7)) for a ten-dimensional function and I have found that the architecture proposed there, namely:
model = Sequential()
model.add(Dense(128,input_shape=(5,), activation='tanh'))
model.add(Dense(64,activation='tanh'))
model.add(Dense(1,activation='sigmoid'))
model.compile(optimizer='adam', loss='mae')
gives me my best results, converging to a best loss of around 7e-4 on my validation data when the batch size is 1000. Adding or removing more neurons or layers seems to reduce the accuracy. Dropout regularisation also reduces accuracy. I am currently using 1e7 training samples, which took two days to generate (hence the desire to approximate this function). I would like to reduce the mae by another order of magnitude, does anyone have any suggestions how to do this?