I am dealing with the problem, which concerns the camera calibration. I need calibrated cameras to realize measurements of the 3D objects. I am using OpenCV to carry out the calibration and I am wondering how can I predict or calculate a volume in which the camera is well calibrated. Is there a solution to increase the volume espacially in the direction of the optical axis? Does the procedure, in which I increase the movement range of the calibration target in 'z' direction gives sufficient difference?
1 Answers
I think you confuse a few key things in your question:
- Camera calibration - this means finding out the matrices (intrinsic and extrinsic) that describe the camera position, rotation, up vector, distortion, optical center etc. etc.
- Epipolar Rectification - this means virtually "rotating" the image planes so that they become coplanar (parallel). This simplifies the stereo reconstruction algorithms.
For camera calibration you do not need to care about any volumes - there aren't volumes where the camera is well calibrated or wrong calibrated. If you use the chessboard pattern calibration, your cameras are either calibrated or not.
When dealing with rectification, you want to know which areas of the rectified images correspond and also maximize these areas. OpenCV allows you to choose between two extremes - either making all pixels in the returned areas valid and cutting out pixels that don't fit into the rectangular area or include all pixels even with invalid ones.
OpenCV documentation has some nice, more detailed descriptions here: http://opencv.willowgarage.com/documentation/camera_calibration_and_3d_reconstruction.html