I have a fisheye camera, which I have already calibrated. I need to calculate the camera pose w.r.t a checkerboard just by using a single image of said checkerboard,the intrinsic parameters, and the size of the squares of the checkerboards. Unfortunately many calibration libraries first calculate the extrinsic parameters from a set of images and then the intrinsic parameters, which is essentially the "inverse" procedure of what I want. Of course I can just put my checkerboard image inside the set of other images I used for the calibration and run the calib procedure again, but it's very tedious, and moreover, I can't use a checkerboard of different size from the ones used for the instrinsic calibration. Can anybody point me in the right direction?
EDIT: After reading francesco's answer, I realized that I didn't explain what I mean by calibrating the camera. My problem begins with the fact that I don't have the classic intrinsic parameters matrix (so I can't actually use the method Francesco described).In fact I calibrated the fisheye camera with the Scaramuzza's procedure (https://sites.google.com/site/scarabotix/ocamcalib-toolbox), which basically finds a polynom which maps 3d world points into pixel coordinates( or, alternatively, the polynom which backprojects pixels to the unit sphere). Now, I think these information are enough to find the camera pose w.r.t. a chessboard, but I'm not sure exactly how to proceed.
r1 = (x1,y1,1)
andr2 = (x2,y2,1)
in normalized coordinates. Knowing that in world coordinates the rays are connected by a segment of lengthw
(the width of the square) forming a triangle and that the coordinates of the point in world coordinates will be a multiple of the normalized ones, can you recover the pose by using these constraints on multiple points in a system maybe? Just an idea – aledalgrande