I am a beginner in programming ios. I have to make a project for my school. The goal is to make a recording with the microphone then apply a high pass filter and save it in an m4a file.
On this site and many others, I found a lot of identical code but yet with the arrival of swift 3, the code is no longer functional.
I start by recording and saving what comes out of my microphone with AVAudioPlayer.
Then I read my file in an mpc buffer.
I retrieve the data from the buffer in a float array.
And finally, I apply a FFT like the examples I found.
If I display the data of the buffer (table of float coming from the buffer) these contain something.
If I display my VDSP vector it contains the data.
But when I apply the FFT, the result of my VDSP output that contains the reel and the imaginary returns "nan" values.
Here I do not understand the functioning of the FFT and I do not understand if the resutat "output" contains the frequencies or if it is only one of the parameters of my VDSP that contain them. (Real or imaginary):
I then thought of applying a filter on these results and then putting my values back into an inverse FFT in order to reconstruct the m4a file with the modifications.
If you could explain to me if my method is false or if it is my code that
// recupere le lien du fichier audio a analysé
let url = getDocumentsDirectory().appendingPathComponent("recording.m4a")
// lancé l'audio dans le core AVaudioFile
let audioFile = try! AVAudioFile(forReading: url)
// nombre de frame dans l'audio
let frameCount = UInt32(audioFile.length)
print("frame count\(frameCount)")
//remplis un buffer avec les information du son et le nombre de framme
let buffer = AVAudioPCMBuffer(pcmFormat: audioFile.processingFormat, frameCapacity: frameCount)
do {
//lecture de l'audio dans le buffer
try audioFile.read(into: buffer, frameCount:frameCount)
print("lecture ok")
} catch {
//lecture échouer
}
print(buffer.floatChannelData?.pointee ?? "aucune valeur float")
// printer le buffer de byte de l'audio
print("\n buffer: \n");
for k in 1...frameCount
{
print("value buffer \(buffer.floatChannelData?.pointee[Int(k)])");
}
// définit un fonction log2n
let log2n = UInt(round(log2(Double(frameCount))))
// définit la taille de buffer final potentiel
let bufferSizePOT = Int(1 << log2n)
//crée une structure FFT
//Si zéro est renvoyé, la routine n'a pas réussi à allouer de stockage
let fftSetup = vDSP_create_fftsetup(log2n, Int32(kFFTRadix2))
//print fft
print("valeur du fftSetup \(fftSetup)")
// create packed real input
// séparation des buffer en nombre réel et imaginaire :
var realp = [Float](repeating: 0.0, count: bufferSizePOT/2)
var imagp = [Float](repeating: 0.0, count: bufferSizePOT/2)
/*
print("\n real and image: \n");
for k in 0..<realp.count
{
print("value real \(realp[k]) et value imaginaire \(imagp[k])");
}
*/
// construit un vecteur double contenant les real et les imaginaire
var output = DSPSplitComplex(realp: &realp, imagp: &imagp)
buffer.floatChannelData?.withMemoryRebound(to: DSPComplex.self, capacity: bufferSizePOT/2) {
/*
Copie le contenu d'un vecteur complexe intercalé C vers un vecteur complexe divisé Z; Précision unique.
void vDSP_ctoz(const DSPComplex *__C, vDSP_Stride __IC, const DSPSplitComplex *__Z, vDSP_Stride __IZ, vDSP_Length __N);
Paramètres
__C
Vecteur d'entrée complexe entrelacé à simple précision.
__IC
Stride pour C; Doit être un nombre pair.
__Z
Vecteur de sortie complexe à division simple.
za
Stride pour Z.
__N
Le nombre d'éléments à traiter.
*/
dspComplexStream in vDSP_ctoz(dspComplexStream, 2, &output, 1, UInt(bufferSizePOT / 2))
}
/*
calcul la série de fourier discrette du domaine temporel ver le domaine fréquentielle
paramètre :
func vDSP_fft_zrip(_ __Setup:
- --FFTSetup: l'objet FFTsetup
_ __C: pointeur sur le vecteur complex de sortie
_ __IC: pas entre les elements de --C, (a 1 pour des meilleures performance)
_ __Log2N: Il base 2 exposant du nombre d'éléments à traiter. Par exemple, pour traiter 1024 éléments,
spécifiez 10 pour le paramètre Log2N.
_ __Direction: FFTDirection : donne la direction de la discretisations.
time domain to the frequency domain = (forward).
frequency domain to the time domain (inverse).
)*/
vDSP_fft_zrip(fftSetup!, &output, 1, log2n, Int32(FFTDirection(FFT_FORWARD)))
print("\nSpectrum:\n");
for i in 0..<realp.count
{
print("value de i \(i), réel : \(output.realp[i]), imaginaire : \(imagp[i])");
}
var fft = [Float](repeating:0.0, count:Int(bufferSizePOT / 2))
let bufferOver2: vDSP_Length = vDSP_Length(bufferSizePOT / 2)
vDSP_zvmags(&output, 1, &fft, 1, bufferOver2)
for i in 0..<bufferSizePOT/2
{
print("value de buff2 \(fft[i])");
}
// termine le processus FFT
vDSP_destroy_fftsetup(fftSetup)
EDIT : juste play song with filter low pass and dont work
engine = AVAudioEngine()
player = AVAudioPlayerNode()
player.volume = 1.0
let path = Bundle.main.path(forResource: "audio10to1000", ofType: "wav")!
let url = NSURL.fileURL(withPath: path)
let file = try? AVAudioFile(forReading: url)
var mainMixer = AVAudioMixerNode()
mainMixer = engine.mainMixerNode
engine.attach(player)
EQNode = AVAudioUnitEQ(numberOfBands: 1)
var filterParams = EQNode.bands[0] as AVAudioUnitEQFilterParameters
filterParams.filterType = .lowPass
filterParams.frequency = 500.0
filterParams.bypass = false
engine.attach(EQNode)
engine.connect(player, to: EQNode, format: file?.processingFormat)
engine.connect(EQNode, to: mainMixer, format: file?.processingFormat)
// engine.connect(player, to: mainMixer, format: file?.processingFormat)
player.scheduleFile(file!, at: nil, completionHandler: nil)
engine.prepare()
do {
try engine.start()
} catch _ {
print("******************* erreur *************")
}
player.play()
AVAudioUnitEQ
. If you want to implement one yourself, first go for a FIR or IIR solution: en.wikipedia.org/wiki/Low-pass_filter Have fun! – shallowThought