I have a dataset
category
cat a
cat b
cat a
I'd like to be able to return something like (showing unique values and frequency)
category freq
cat a 2
cat b 1
Use groupby
and count
:
In [37]:
df = pd.DataFrame({'a':list('abssbab')})
df.groupby('a').count()
Out[37]:
a
a
a 2
b 3
s 2
[3 rows x 1 columns]
See the online docs: https://pandas.pydata.org/pandas-docs/stable/user_guide/groupby.html
Also value_counts()
as @DSM has commented, many ways to skin a cat here
In [38]:
df['a'].value_counts()
Out[38]:
b 3
a 2
s 2
dtype: int64
If you wanted to add frequency back to the original dataframe use transform
to return an aligned index:
In [41]:
df['freq'] = df.groupby('a')['a'].transform('count')
df
Out[41]:
a freq
0 a 2
1 b 3
2 s 2
3 s 2
4 b 3
5 a 2
6 b 3
[7 rows x 2 columns]
df.apply(pd.value_counts).fillna(0)
value_counts - Returns object containing counts of unique values
apply - count frequency in every column. If you set axis=1
, you get frequency in every row
fillna(0) - make output more fancy. Changed NaN to 0
In 0.18.1 groupby
together with count
does not give the frequency of unique values:
>>> df
a
0 a
1 b
2 s
3 s
4 b
5 a
6 b
>>> df.groupby('a').count()
Empty DataFrame
Columns: []
Index: [a, b, s]
However, the unique values and their frequencies are easily determined using size
:
>>> df.groupby('a').size()
a
a 2
b 3
s 2
With df.a.value_counts()
sorted values (in descending order, i.e. largest value first) are returned by default.
If your DataFrame has values with the same type, you can also set return_counts=True
in numpy.unique().
index, counts = np.unique(df.values,return_counts=True)
np.bincount() could be faster if your values are integers.
You can also do this with pandas by broadcasting your columns as categories first, e.g. dtype="category"
e.g.
cats = ['client', 'hotel', 'currency', 'ota', 'user_country']
df[cats] = df[cats].astype('category')
and then calling describe
:
df[cats].describe()
This will give you a nice table of value counts and a bit more :):
client hotel currency ota user_country
count 852845 852845 852845 852845 852845
unique 2554 17477 132 14 219
top 2198 13202 USD Hades US
freq 102562 8847 516500 242734 340992
@metatoaster has already pointed this out.
Go for Counter
. It's blazing fast.
import pandas as pd
from collections import Counter
import timeit
import numpy as np
df = pd.DataFrame(np.random.randint(1, 10000, (100, 2)), columns=["NumA", "NumB"])
%timeit -n 10000 df['NumA'].value_counts()
# 10000 loops, best of 3: 715 µs per loop
%timeit -n 10000 df['NumA'].value_counts().to_dict()
# 10000 loops, best of 3: 796 µs per loop
%timeit -n 10000 Counter(df['NumA'])
# 10000 loops, best of 3: 74 µs per loop
%timeit -n 10000 df.groupby(['NumA']).count()
# 10000 loops, best of 3: 1.29 ms per loop
Cheers!
I believe this should work fine for any DataFrame columns list.
def column_list(x):
column_list_df = []
for col_name in x.columns:
y = col_name, len(x[col_name].unique())
column_list_df.append(y)
return pd.DataFrame(column_list_df)
column_list_df.rename(columns={0: "Feature", 1: "Value_count"})
The function "column_list" checks the columns names and then checks the uniqueness of each column values.
df["category"].value_counts()
? – DSM