I have a (non-symmetric) probability matrix, and an observed vector of integer outcomes. I would like to find a vector that maximises the probability of the outcomes, given the transition matrix. Simply, I am trying to estimate a distribution of particles at sea given their ultimate distribution on land, and a matrix of probabilities of a particle released from a given point in the ocean ending up at a given point on the land.
The vector that I want to find is subject to the constraint that all components must be between 0-1, and the sum of the components must equal 1. I am trying to figure out the best optimisation approach for the problem.
My transition matrix and data set are quite large, but I have created a smaller one here:
I used a simulated known at- sea distribution of
msim<-c(.3,.2,.1,.3,.1,0)
and a simulated probability matrix (t) to come up with an estimated coastal matrix (Datasim2), as follows:
t<-matrix (c(0,.1,.1,.1,.1,.2,0,.1,0,0,.3,0,0,0,0,.4,.1,.3,0,.1,0,.1,.4,0,0,0,.1,0,.1,.1),
nrow=5,ncol=6, byrow=T)
rownames(t)<-c("C1","C2","C3","C4","C5") ### locations on land
colnames(t)<-c("S1","S2","S3","S4","S5","S6") ### locations at sea
Datasim<-as.numeric (round((t %*% msim)*500))
Datasim2<-c(rep("C1",95), rep("C2",35), rep("C3",90),rep("C4",15),rep("C5",30))
M <-c(0.1,0.1,0.1,0.1,0.1,0.1) ## starting M
I started with a straightforward function as follows:
EstimateSource3<-function(M,Data,T){
EstEndProbsall<-M%*%T
TotalLkhd<-rep(NA, times=dim(Data)[1])
for (j in 1:dim(Data)[1]){
ObsEstEndLkhd<-0
ObsEstEndLkhd<-1-EstEndProbsall[1,] ## likelihood of particle NOT ending up at locations other than the location of interest
IndexC<-which(colnames(EstEndProbsall)==Data$LocationCode[j], arr.ind=T) ## likelihood of ending up at location of interest
ObsEstEndLkhd[IndexC]<-EstEndProbsall[IndexC]
#Total likelihood
TotalLkhd[j]<-sum(log(ObsEstEndLkhd))
}
SumTotalLkhd<-sum(TotalLkhd)
return(SumTotalLkhd)
}
DistributionEstimate <- optim(par = M, fn = EstimateSource3, Data = Datasim2, T=t,
control = list(fnscale = -1, trace=5, maxit=500), lower = 0, upper = 1)
To constrain the sum to 1, I tried using a few of the suggestions posted here:How to set parameters' sum to 1 in constrained optimization
e.g. adding M<-M/sum(M)
or SumTotalLkhd<-SumTotalLkhd-(10*pwr)
to the body of the function, but neither yielded anything like msim, and in fact, the 2nd solution came up with the error “L-BFGS-B needs finite values of 'fn'”
I thought perhaps the quadprog package might be of some help, but I don’t think I have a symmetric positive definite matrix…
Thanks in advance for your help!
invT <- ginv(T)
but for some reason this does not work; (invT %*% T does not yield an identity matrix. I cannot figure out why! Note that I have transposed the transition matrix in order for the matrix equation to work properly. - Alexandra