I know this question is old; but I wanted to do a similar thing, I created a simple framework which helps you read and process a large file in parallel. Leaving what I tried as an answer.
This is the code, I give an example in the end
def chunkify_file(fname, size=1024*1024*1000, skiplines=-1):
"""
function to divide a large text file into chunks each having size ~= size so that the chunks are line aligned
Params :
fname : path to the file to be chunked
size : size of each chink is ~> this
skiplines : number of lines in the begining to skip, -1 means don't skip any lines
Returns :
start and end position of chunks in Bytes
"""
chunks = []
fileEnd = os.path.getsize(fname)
with open(fname, "rb") as f:
if(skiplines > 0):
for i in range(skiplines):
f.readline()
chunkEnd = f.tell()
count = 0
while True:
chunkStart = chunkEnd
f.seek(f.tell() + size, os.SEEK_SET)
f.readline() # make this chunk line aligned
chunkEnd = f.tell()
chunks.append((chunkStart, chunkEnd - chunkStart, fname))
count+=1
if chunkEnd > fileEnd:
break
return chunks
def parallel_apply_line_by_line_chunk(chunk_data):
"""
function to apply a function to each line in a chunk
Params :
chunk_data : the data for this chunk
Returns :
list of the non-None results for this chunk
"""
chunk_start, chunk_size, file_path, func_apply = chunk_data[:4]
func_args = chunk_data[4:]
t1 = time.time()
chunk_res = []
with open(file_path, "rb") as f:
f.seek(chunk_start)
cont = f.read(chunk_size).decode(encoding='utf-8')
lines = cont.splitlines()
for i,line in enumerate(lines):
ret = func_apply(line, *func_args)
if(ret != None):
chunk_res.append(ret)
return chunk_res
def parallel_apply_line_by_line(input_file_path, chunk_size_factor, num_procs, skiplines, func_apply, func_args, fout=None):
"""
function to apply a supplied function line by line in parallel
Params :
input_file_path : path to input file
chunk_size_factor : size of 1 chunk in MB
num_procs : number of parallel processes to spawn, max used is num of available cores - 1
skiplines : number of top lines to skip while processing
func_apply : a function which expects a line and outputs None for lines we don't want processed
func_args : arguments to function func_apply
fout : do we want to output the processed lines to a file
Returns :
list of the non-None results obtained be processing each line
"""
num_parallel = min(num_procs, psutil.cpu_count()) - 1
jobs = chunkify_file(input_file_path, 1024 * 1024 * chunk_size_factor, skiplines)
jobs = [list(x) + [func_apply] + func_args for x in jobs]
print("Starting the parallel pool for {} jobs ".format(len(jobs)))
lines_counter = 0
pool = mp.Pool(num_parallel, maxtasksperchild=1000) # maxtaskperchild - if not supplied some weird happend and memory blows as the processes keep on lingering
outputs = []
for i in range(0, len(jobs), num_parallel):
print("Chunk start = ", i)
t1 = time.time()
chunk_outputs = pool.map(parallel_apply_line_by_line_chunk, jobs[i : i + num_parallel])
for i, subl in enumerate(chunk_outputs):
for x in subl:
if(fout != None):
print(x, file=fout)
else:
outputs.append(x)
lines_counter += 1
del(chunk_outputs)
gc.collect()
print("All Done in time ", time.time() - t1)
print("Total lines we have = {}".format(lines_counter))
pool.close()
pool.terminate()
return outputs
Say for example, I have a file in which I want to count the number of words in each line, then the processing of each line would look like
def count_words_line(line):
return len(line.strip().split())
and then call the function like:
parallel_apply_line_by_line(input_file_path, 100, 8, 0, count_words_line, [], fout=None)
Using this, I get a speed up of ~8 times as compared to vanilla line by line reading on a sample file of size ~20GB in which I do some moderately complicated processing on each line.
for line in infile:already does decent buffering inside theiomodule code (in Python 3.1+) or inside the C stdio underneath (in Python 2.x), so unless you're using Python 3.0, it should be fine. But if you want to force it to use larger buffers, you can always loop over, say,infile.readlines(65536)and then loop over the lines within each chunk. - abarnertfor line in infile.readlines():which will be much faster to iterate over than the file object itself - the_constant