I'm using lmer()
in package lme4
to estimate mixed effects models. This works well, but now I want to run the estimation process for a fixed number of iterations, then resume the process by specifying start values, as calculated by the last estimation process.
According to the help for ?lmer
this is possible, by setting the arguments:
start
- these are the new start values, and according to the help one can extract the value in slotST
from a fitted model and use these, i.e. usex@ST
maxiter
- supplied as a named argument tocontrol
So, for example, suppose I want to fit a lme
using the iris
data, one can try this:
library(lme4)
# Fit model with limited number of iterations
frm <- "Sepal.Length ~ Sepal.Width | Species"
x <- lmer(frm, data=iris,
verbose=TRUE, control=list(maxIter=1), model=FALSE)
# Capture starting values for next set of iterations
start <- list(ST=x@ST)
# Update model
twoStep <- lmer(frm, data=iris,
verbose=TRUE, control=list(maxIter=100), model=TRUE,
start=start)
This works. Take a look at the output, where the first column is the REML, i.e. the random effect maximum likelihood. Notice especially that the REML in model 2 starts where model 1 terminates:
> x <- lmer(frm, data=iris,
+ verbose=TRUE, control=list(maxIter=1), model=FALSE)
0: 264.60572: 0.230940 0.0747853 0.00000
1: 204.22878: 0.518239 1.01025 0.205835
1: 204.22878: 0.518239 1.01025 0.205835
> # Capture starting values for next set of iterations
> start <- list(ST=x@ST)
> # Update model
> twoStep <- lmer(frm, data=iris,
+ verbose=TRUE, control=list(maxIter=100), model=TRUE,
+ start=start)
0: 204.22878: 0.518239 1.01025 0.205835
1: 201.51667: 0.610272 2.00277 0.286049
2: 201.46706: 0.849203 1.94906 0.358809
3: 201.44614: 0.932371 1.88581 0.482423
4: 201.39421: 1.00909 1.71078 0.871824
5: 201.36543: 1.00643 1.60453 1.01663
6: 201.31066: 1.00208 1.35520 1.27524
7: 201.28458: 1.08227 1.22335 1.35147
8: 201.24330: 1.50333 0.679759 1.31698
9: 201.11881: 1.95760 0.329767 0.936047
However, when I have a different value of maxIters
this no longer works:
x <- lmer(frm, data=iris,
verbose=TRUE, control=list(maxIter=3), model=FALSE)
start <- list(ST=x@ST)
twoStep <- lmer(frm, data=iris,
verbose=TRUE, control=list(maxIter=100), model=TRUE,
start=start)
Notice that the REML value restarts at 264, i.e. the beginning:
> x <- lmer(frm, data=iris,
+ verbose=TRUE, control=list(maxIter=3), model=FALSE)
0: 264.60572: 0.230940 0.0747853 0.00000
1: 204.22878: 0.518238 1.01025 0.205835
2: 201.94075: 0.00000 1.51757 -1.18259
3: 201.71473: 0.00000 1.69036 -1.89803
3: 201.71473: 0.00000 1.69036 -1.89803
> # Capture starting values for next set of iterations
> start <- list(ST=x@ST)
> # Update model
> twoStep <- lmer(frm, data=iris,
+ verbose=TRUE, control=list(maxIter=100), model=TRUE,
+ start=start)
0: 264.60572: 0.230940 0.0747853 0.00000
1: 204.22878: 0.518238 1.01025 0.205835
2: 201.94075: 0.00000 1.51757 -1.18259
3: 201.71473: 0.00000 1.69036 -1.89803
4: 201.64641: 0.00000 1.82159 -2.44144
5: 201.63698: 0.00000 1.88282 -2.69497
6: 201.63649: 0.00000 1.89924 -2.76298
7: 201.63649: 4.22291e-08 1.90086 -2.76969
8: 201.63649: 4.22291e-08 1.90086 -2.76969
Question: How can I reliably restart lmer()
with start values obtained from a previously fitted model?
Session information:
packageVersion("lme4")
[1] ‘0.999999.2’
start
functionality oflme4
has not been very thoroughly exercised, so I'm sure there are lots of issues like this. How strong is your need to use the stable rather than the development version? I will look into this, but we're hoping to do most of our debugging on the stable version ... – Ben Bolkerlibrary(devtools); install_github("lme4",user="lme4")
. It is easier in this version to extract the deviance function and use it in your own optimization, which you might prefer if you want more control. Alternatively, do try out thestart
experiment and let me know at github.com/lme4/lme4/issues if you find something not working ... – Ben Bolkerlmer
(although not forglmer
, which is slightly trickier). – Ben Bolker