23
votes

I'm trying to learn scheme via SICP. Exercise 1.3 reads as follow: Define a procedure that takes three numbers as arguments and returns the sum of the squares of the two larger numbers. Please comment on how I can improve my solution.

(define (big x y)
    (if (> x y) x y))

(define (p a b c)
    (cond ((> a b) (+ (square a) (square (big b c))))
          (else (+ (square b) (square (big a c))))))
17
FWIW, I think your solution is better than any of the provided answers (if you rename big to max, as suggested).Ellen Spertus
Nice solution on your own!lukas.pukenis

17 Answers

33
votes

Using only the concepts presented at that point of the book, I would do it:

(define (square x) (* x x))

(define (sum-of-squares x y) (+ (square x) (square y)))

(define (min x y) (if (< x y) x y))

(define (max x y) (if (> x y) x y))

(define (sum-squares-2-biggest x y z)
  (sum-of-squares (max x y) (max z (min x y))))
13
votes

big is called max. Use standard library functionality when it's there.

My approach is different. Rather than lots of tests, I simply add the squares of all three, then subtract the square of the smallest one.

(define (exercise1.3 a b c)
  (let ((smallest (min a b c))
        (square (lambda (x) (* x x))))
    (+ (square a) (square b) (square c) (- (square smallest)))))

Whether you prefer this approach, or a bunch of if tests, is up to you, of course.


Alternative implementation using SRFI 95:

(define (exercise1.3 . args)
  (let ((sorted (sort! args >))
        (square (lambda (x) (* x x))))
    (+ (square (car sorted)) (square (cadr sorted)))))

As above, but as a one-liner (thanks synx @ freenode #scheme); also requires SRFI 1 and SRFI 26:

(define (exercise1.3 . args)
  (apply + (map! (cut expt <> 2) (take! (sort! args >) 2))))
11
votes

What about something like this?

(define (p a b c)
  (if (> a b)
      (if (> b c)
          (+ (square a) (square b))
          (+ (square a) (square c)))
      (if (> a c)
          (+ (square a) (square b))
          (+ (square b) (square c)))))
11
votes

I did it with the following code, which uses the built-in min, max, and square procedures. They're simple enough to implement using only what's been introduced in the text up to that point.

(define (sum-of-highest-squares x y z)
   (+ (square (max x y))
      (square (max (min x y) z))))
6
votes

Using only the concepts introduced up to that point of the text, which I think is rather important, here is a different solution:

(define (smallest-of-three a b c)
        (if (< a b)
            (if (< a c) a c)
            (if (< b c) b c)))

(define (square a)
        (* a a))

(define (sum-of-squares-largest a b c) 
        (+ (square a)
           (square b)
           (square c)
           (- (square (smallest-of-three a b c)))))
5
votes
(define (f a b c) 
  (if (= a (min a b c)) 
      (+ (* b b) (* c c)) 
      (f b c a)))
4
votes

Looks ok to me, is there anything specific you want to improve on?

You could do something like:

(define (max2 . l)
  (lambda ()
    (let ((a (apply max l)))
      (values a (apply max (remv a l))))))

(define (q a b c)
  (call-with-values (max2 a b c)
    (lambda (a b)
      (+ (* a a) (* b b)))))

(define (skip-min . l)
  (lambda ()
    (apply values (remv (apply min l) l))))

(define (p a b c)
  (call-with-values (skip-min a b c)
    (lambda (a b)
      (+ (* a a) (* b b)))))

And this (proc p) can be easily converted to handle any number of arguments.

4
votes
(define (sum-sqr x y)
(+ (square x) (square y)))

(define (sum-squares-2-of-3 x y z)
    (cond ((and (<= x y) (<= x z)) (sum-sqr y z))
             ((and (<= y x) (<= y z)) (sum-sqr x z))
             ((and (<= z x) (<= z y)) (sum-sqr x y))))
3
votes

With Scott Hoffman's and some irc help I corrected my faulty code, here it is

(define (p a b c)
    (cond ((> a b)
        (cond ((> b c)
            (+ (square a) (square b)))
            (else (+ (square a) (square c)))))
        (else
            (cond ((> a c)
                (+ (square b) (square a))))
             (+ (square b) (square c)))))
2
votes

You can also sort the list and add the squares of the first and second element of the sorted list:

(require (lib "list.ss")) ;; I use PLT Scheme

(define (exercise-1-3 a b c)
  (let* [(sorted-list (sort (list a b c) >))
         (x (first sorted-list))
         (y (second sorted-list))]
    (+ (* x x) (* y y))))
2
votes

Here's yet another way to do it:

#!/usr/bin/env mzscheme
#lang scheme/load

(module ex-1.3 scheme/base
  (define (ex-1.3 a b c)
    (let* ((square (lambda (x) (* x x)))
           (p (lambda (a b c) (+ (square a) (square (if (> b c) b c))))))
      (if (> a b) (p a b c) (p b a c))))

  (require scheme/contract)
  (provide/contract [ex-1.3 (-> number? number? number? number?)]))

;; tests
(module ex-1.3/test scheme/base
  (require (planet "test.ss" ("schematics" "schemeunit.plt" 2))
           (planet "text-ui.ss" ("schematics" "schemeunit.plt" 2)))
  (require 'ex-1.3)

  (test/text-ui
   (test-suite
    "ex-1.3"
    (test-equal? "1 2 3" (ex-1.3 1 2 3) 13)
    (test-equal? "2 1 3" (ex-1.3 2 1 3) 13)
    (test-equal? "2 1. 3.5" (ex-1.3 2 1. 3.5) 16.25)
    (test-equal? "-2 -10. 3.5" (ex-1.3 -2 -10. 3.5) 16.25)
    (test-exn "2+1i 0 0" exn:fail:contract? (lambda () (ex-1.3 2+1i 0 0)))
    (test-equal? "all equal" (ex-1.3 3 3 3) 18))))

(require 'ex-1.3/test)

Example:

$ mzscheme ex-1.3.ss
6 success(es) 0 failure(s) 0 error(s) 6 test(s) run
0
2
votes

It's nice to see how other people have solved this problem. This was my solution:

(define (isGreater? x y z)
(if (and (> x z) (> y z))
(+ (square x) (square y))
0))

(define (sumLarger x y z)
(if (= (isGreater? x y z) 0)   
(sumLarger y z x)
(isGreater? x y z)))

I solved it by iteration, but I like ashitaka's and the (+ (square (max x y)) (square (max (min x y) z))) solutions better, since in my version, if z is the smallest number, isGreater? is called twice, creating an unnecessarily slow and circuitous procedure.

1
votes
(define (sum a b) (+ a b))
(define (square a) (* a a))
(define (greater a b ) 
  ( if (< a b) b a))
(define (smaller a b ) 
  ( if (< a b) a b))
(define (sumOfSquare a b)
    (sum (square a) (square b)))
(define (sumOfSquareOfGreaterNumbers a b c)
  (sumOfSquare (greater a b) (greater (smaller a b) c)))
0
votes

I've had a go:

(define (procedure a b c)
    (let ((y (sort (list a b c) >)) (square (lambda (x) (* x x))))
        (+ (square (first y)) (square(second y)))))
0
votes
;exercise 1.3
(define (sum-square-of-max a b c)
  (+ (if (> a b) (* a a) (* b b))
     (if (> b c) (* b b) (* c c))))
0
votes

I think this is the smallest and most efficient way:

(define (square-sum-larger a b c)
 (+ 
  (square (max a b))
  (square (max (min a b) c))))
0
votes

Below is the solution that I came up with. I find it easier to reason about a solution when the code is decomposed into small functions.

            ; Exercise 1.3
(define (sum-square-largest a b c)
  (+ (square (greatest a b))
     (square (greatest (least a b) c))))

(define (greatest a b)
  (cond (( > a b) a)
    (( < a b) b)))

(define (least a b)
  (cond ((> a b) b)
    ((< a b) a)))

(define (square a)
  (* a a))