I have an RGB image. I want to convert it to numpy array. I did the following
im = cv.LoadImage("abc.tiff")
a = numpy.asarray(im)
It creates an array with no shape. I assume it is a iplimage object.
PIL (Python Imaging Library) and Numpy work well together.
I use the following functions.
from PIL import Image
import numpy as np
def load_image( infilename ) :
img = Image.open( infilename )
img.load()
data = np.asarray( img, dtype="int32" )
return data
def save_image( npdata, outfilename ) :
img = Image.fromarray( np.asarray( np.clip(npdata,0,255), dtype="uint8"), "L" )
img.save( outfilename )
The 'Image.fromarray' is a little ugly because I clip incoming data to [0,255], convert to bytes, then create a grayscale image. I mostly work in gray.
An RGB image would be something like:
outimg = Image.fromarray( ycc_uint8, "RGB" )
outimg.save( "ycc.tif" )
You can also use matplotlib for this.
from matplotlib.image import imread
img = imread('abc.tiff')
print(type(img))
output:
<class 'numpy.ndarray'>
When using the answer from David Poole I get a SystemError with gray scale PNGs and maybe other files. My solution is:
import numpy as np
from PIL import Image
img = Image.open( filename )
try:
data = np.asarray( img, dtype='uint8' )
except SystemError:
data = np.asarray( img.getdata(), dtype='uint8' )
Actually img.getdata() would work for all files, but it's slower, so I use it only when the other method fails.
You can get numpy array of rgb image easily by using numpy
and Image from PIL
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
im = Image.open('*image_name*') #These two lines
im_arr = np.array(im) #are all you need
plt.imshow(im_arr) #Just to verify that image array has been constructed properly
OpenCV image format supports the numpy array interface. A helper function can be made to support either grayscale or color images. This means the BGR -> RGB conversion can be conveniently done with a numpy slice, not a full copy of image data.
Note: this is a stride trick, so modifying the output array will also change the OpenCV image data. If you want a copy, use .copy()
method on the array!
import numpy as np
def img_as_array(im):
"""OpenCV's native format to a numpy array view"""
w, h, n = im.width, im.height, im.channels
modes = {1: "L", 3: "RGB", 4: "RGBA"}
if n not in modes:
raise Exception('unsupported number of channels: {0}'.format(n))
out = np.asarray(im)
if n != 1:
out = out[:, :, ::-1] # BGR -> RGB conversion
return out
I also adopted imageio, but I found the following machinery useful for pre- and post-processing:
import imageio
import numpy as np
def imload(*a, **k):
i = imageio.imread(*a, **k)
i = i.transpose((1, 0, 2)) # x and y are mixed up for some reason...
i = np.flip(i, 1) # make coordinate system right-handed!!!!!!
return i/255
def imsave(i, url, *a, **k):
# Original order of arguments was counterintuitive. It should
# read verbally "Save the image to the URL" — not "Save to the
# URL the image."
i = np.flip(i, 1)
i = i.transpose((1, 0, 2))
i *= 255
i = i.round()
i = np.maximum(i, 0)
i = np.minimum(i, 255)
i = np.asarray(i, dtype=np.uint8)
imageio.imwrite(url, i, *a, **k)
The rationale is that I am using numpy for image processing, not just image displaying. For this purpose, uint8s are awkward, so I convert to floating point values ranging from 0 to 1.
When saving images, I noticed I had to cut the out-of-range values myself, or else I ended up with a really gray output. (The gray output was the result of imageio compressing the full range, which was outside of [0, 256), to values that were inside the range.)
There were a couple other oddities, too, which I mentioned in the comments.
Try timing the options to load an image to numpy array, they are quite similar. Go for plt.imread
for simplicity and speed.
def time_this(function, times=100):
cum_time = 0
for t in range(times):
st = time.time()
function()
cum_time += time.time() - st
return cum_time / times
import matplotlib.pyplot as plt
def load_img_matplotlib(img_path):
return plt.imread(img_path)
import cv2
def load_img_cv2(img_path):
return cv2.cvtColor(cv2.imread(img_path), cv2.COLOR_BGR2RGB)
from PIL import Image
import numpy as np
def load_img_pil(img_path):
img = Image.open(img_path)
img.load()
return np.asarray( img, dtype="int32" )
if __name__=='__main__':
img_path = 'your_image_path'
for load_fn in [load_img_pil, load_img_cv2, load_img_matplotlib]:
print('-'*20)
print(time_this(lambda: load_fn(img_path)), 10000)
Result:
--------------------
0.0065201687812805175 10000 PIL, as in [the second answer][1]https://stackoverflow.com/a/7769424/16083419)
--------------------
0.0053211402893066405 10000 CV2
--------------------
0.005320906639099121 10000 matplotlib
You can try the following method. Here is a link to the docs.
tf.keras.preprocessing.image.img_to_array(img, data_format=None, dtype=None)
from PIL import Image
img_data = np.random.random(size=(100, 100, 3))
img = tf.keras.preprocessing.image.array_to_img(img_data)
array = tf.keras.preprocessing.image.img_to_array(img)
cv
is the OpenCV module, then you should tag it as such. This link may help: opencv.willowgarage.com/documentation/python/… – Paul