Dataset description:
(1) X_train: (6000,4)
shape
(2) y_train: (6000,4)
shape
(3) X_validation: (2000,4)
shape
(4) y_validation: (2000,4)
shape
(5) X_test: (2000,4)
shape
(6) y_test: (2000,4)
shape
Relationship between X and Y is shown here
For single label classification, the activation function of the last layer is Softmax and the loss function is categorical_crossentrop. And I know the mathematical calculation method for the loss function.
And for multi-class multi-label classification problems, the activation function of the last layer is sigmoid, and the loss function is binary_crossentrop. I want to know how the mathematical calculation method of the loss function works
It would be a great help to me if you let me know.
def MinMaxScaler(data):
numerator = data - np.min(data)
denominator = np.max(data) - np.min(data)
return numerator / (denominator + 1e-5)
kki = pd.read_csv(filename,names=['UE0','UE1','UE2','UE3','selected_UE0','selected_UE1','selected_UE2','selected_UE3'])
print(kki)
def LoadData(file):
xy = np.loadtxt(file, delimiter=',', dtype=np.float32)
print("Data set length:", len(xy))
tr_set_size = int(len(xy) * 0.6)
xy[:, 0:-number_of_UEs] = MinMaxScaler(xy[:, 0:-number_of_UEs]) #number_of_UES : 4
X_train = xy[:tr_set_size, 0: -number_of_UEs] #6000 row
y_train = xy[:tr_set_size, number_of_UEs:number_of_UEs*2]
X_valid = xy[tr_set_size:int((tr_set_size/3) + tr_set_size), 0:-number_of_UEs]
y_valid = xy[tr_set_size:int((tr_set_size/3) + tr_set_size), number_of_UEs:number_of_UEs *2]
X_test = xy[int((tr_set_size/3) + tr_set_size):, 0:-number_of_UEs]
y_test = xy[int((tr_set_size/3) + tr_set_size):, number_of_UEs:number_of_UEs*2]
print("Training X shape:", X_train.shape)
print("Training Y shape:", y_train.shape)
print("validation x shape:", X_valid.shape)
print("validation y shape:", y_valid.shape)
print("Test X shape:", X_test.shape)
print("Test Y shape:", y_test.shape)
return X_train, y_train, X_valid, y_valid, X_test, y_test, tr_set_size
X_train, y_train, X_valid, y_valid, X_test, y_test, tr_set_size = LoadData(filename)
model = Sequential()
model.add(Dense(64,activation='relu', input_shape=(X_train.shape[1],)))
model.add(Dense(46, activation='relu'))
model.add(Dense(24, activation='relu'))
model.add(Dense(12, activation='relu'))
model.add(Dense(4, activation= 'sigmoid'))
model.compile( loss ='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
hist = model.fit(X_train, y_train, epochs=5, batch_size=1, verbose= 1, validation_data=(X_valid, y_valid), callbacks= es)
This is a learning process, and even if epochs are repeated, Accuracy does not improve.
Epoch 1/10
6000/6000 [==============================] - 14s 2ms/step - loss: 0.2999 - accuracy: 0.5345 - val_loss: 0.1691 - val_accuracy: 0.5465
Epoch 2/10
6000/6000 [==============================] - 14s 2ms/step - loss: 0.1554 - accuracy: 0.4883 - val_loss: 0.1228 - val_accuracy: 0.4710
Epoch 3/10
6000/6000 [==============================] - 14s 2ms/step - loss: 0.1259 - accuracy: 0.4710 - val_loss: 0.0893 - val_accuracy: 0.4910
Epoch 4/10
6000/6000 [==============================] - 13s 2ms/step - loss: 0.1094 - accuracy: 0.4990 - val_loss: 0.0918 - val_accuracy: 0.5540
Epoch 5/10
6000/6000 [==============================] - 13s 2ms/step - loss: 0.0967 - accuracy: 0.5223 - val_loss: 0.0671 - val_accuracy: 0.5405
Epoch 6/10
6000/6000 [==============================] - 13s 2ms/step - loss: 0.0910 - accuracy: 0.5198 - val_loss: 0.0836 - val_accuracy: 0.5380
Epoch 7/10
6000/6000 [==============================] - 13s 2ms/step - loss: 0.0870 - accuracy: 0.5348 - val_loss: 0.0853 - val_accuracy: 0.5775
Epoch 8/10
6000/6000 [==============================] - 13s 2ms/step - loss: 0.0859 - accuracy: 0.5518 - val_loss: 0.0515 - val_accuracy: 0.6520
Epoch 9/10
6000/6000 [==============================] - 13s 2ms/step - loss: 0.0792 - accuracy: 0.5508 - val_loss: 0.0629 - val_accuracy: 0.4350
Epoch 10/10
6000/6000 [==============================] - 13s 2ms/step - loss: 0.0793 - accuracy: 0.5638 - val_loss: 0.0632 - val_accuracy: 0.6270