I'm a beginner with Agda and im stuck with a hole in my proof here:
import Relation.Binary.PropositionalEquality as Eq
open Eq using (_≡_; refl; cong; sym; subst; trans)
open Eq.≡-Reasoning using (begin_; _≡⟨⟩_; step-≡; _∎)
data Tile : Set where
-- 90° rotation
postulate cw : Tile → Tile
-- -90° rotation
postulate ccw : Tile → Tile
postulate cw/cw/cw/cw : ∀ (t : Tile) → cw (cw (cw (cw t))) ≡ t
postulate ccw/cw : ∀ (t : Tile) → ccw (cw t) ≡ t
postulate cw/ccw : ∀ (t : Tile) → cw (ccw t) ≡ t
cw/cw/cw/ccw : ∀ (t : Tile) → ccw t ≡ cw (cw (cw t))
cw/cw/cw/ccw t =
begin
ccw t
≡⟨ cong ccw ( sym (cw/cw/cw/cw t)) ⟩
ccw ( cw ( cw ( cw ( cw t))))
≡⟨ {!!} ⟩
cw (cw (cw t))
∎
I simply need to show that given the ccw/cw
postulation,
ccw (cw (cw (cw (cw t)))) ≡ cw (cw (cw t))