2
votes

I want to include a pre-trained XLNet (or possibly another state of the art transformer) in a model to fine-tune it.

However, it doesn't work when I include it with keras layers.

import tensorflow as tf
from transformers import AutoTokenizer, TFAutoModel

inputs = tf.keras.Input(shape=2000, dtype='int32')
x = inputs
xlnetPretrainedModel = TFAutoModel.from_pretrained("xlnet-base-cased")
x = xlnetPretrainedModel(x)
x = tf.keras.layers.GlobalAveragePooling1D()(x)
x = tf.keras.layers.Dense(32, activation='relu')(x)
x = tf.keras.layers.Dense(32, activation=None)(x)
model = tf.keras.Model(inputs=inputs, outputs=x)
model.compile(optimizer='adam',
                      loss='mean_squared_error')
model.summary()

The bug is

AttributeError: 'NoneType' object has no attribute 'shape'

at the line

x = xlnetPretrainedModel(x)

So when the model is used on the input layer.

The XLNet model works if used on a numpy array, but then I wouldn't be able to train it.

The full error message is:

---------------------------------------------------------------------------
AttributeError                            Traceback (most recent call last)
<ipython-input-23-d543506f9697> in <module>
      5 x = inputs
      6 xlnetPretrainedModel = TFAutoModel.from_pretrained("xlnet-base-cased")
----> 7 x = xlnetPretrainedModel(x)
      8 x = tf.keras.layers.GlobalAveragePooling1D()(x)
      9 x = tf.keras.layers.Dense(32, activation='relu')(x)

/opt/conda/lib/python3.7/site-packages/tensorflow_core/python/keras/engine/base_layer.py in __call__(self, inputs, *args, **kwargs)
    771                     not base_layer_utils.is_in_eager_or_tf_function()):
    772                   with auto_control_deps.AutomaticControlDependencies() as acd:
--> 773                     outputs = call_fn(cast_inputs, *args, **kwargs)
    774                     # Wrap Tensors in `outputs` in `tf.identity` to avoid
    775                     # circular dependencies.

/opt/conda/lib/python3.7/site-packages/tensorflow_core/python/autograph/impl/api.py in wrapper(*args, **kwargs)
    235       except Exception as e:  # pylint:disable=broad-except
    236         if hasattr(e, 'ag_error_metadata'):
--> 237           raise e.ag_error_metadata.to_exception(e)
    238         else:
    239           raise

AttributeError: in converted code:

    /opt/conda/lib/python3.7/site-packages/transformers/modeling_tf_xlnet.py:810 call  *
        outputs = self.transformer(inputs, **kwargs)
    /opt/conda/lib/python3.7/site-packages/tensorflow_core/python/keras/engine/base_layer.py:805 __call__
        inputs, outputs, args, kwargs)
    /opt/conda/lib/python3.7/site-packages/tensorflow_core/python/keras/engine/base_layer.py:2014 _set_connectivity_metadata_
        input_tensors=inputs, output_tensors=outputs, arguments=arguments)
    /opt/conda/lib/python3.7/site-packages/tensorflow_core/python/keras/engine/base_layer.py:2044 _add_inbound_node
        arguments=arguments)
    /opt/conda/lib/python3.7/site-packages/tensorflow_core/python/keras/engine/node.py:110 __init__
        self.output_shapes = nest.map_structure(backend.int_shape, output_tensors)
    /opt/conda/lib/python3.7/site-packages/tensorflow_core/python/util/nest.py:568 map_structure
        structure[0], [func(*x) for x in entries],
    /opt/conda/lib/python3.7/site-packages/tensorflow_core/python/util/nest.py:568 <listcomp>
        structure[0], [func(*x) for x in entries],
    /opt/conda/lib/python3.7/site-packages/tensorflow_core/python/keras/backend.py:1172 int_shape
        shape = x.shape

    AttributeError: 'NoneType' object has no attribute 'shape'

or after trying a solution presented here https://github.com/huggingface/transformers/issues/1350 by decoring the call by a tf.function

---------------------------------------------------------------------------
AttributeError                            Traceback (most recent call last)
<ipython-input-16-c852fba5aa15> in <module>
      8 xlnetPretrainedModel = TFAutoModel.from_pretrained("xlnet-base-cased")
      9 xlnetPretrainedModel.call = tf.function(xlnetPretrainedModel.transformer.call)
---> 10 x = xlnetPretrainedModel(x)
     11 
     12 x = tf.keras.layers.GlobalAveragePooling1D()(x)

/opt/conda/lib/python3.7/site-packages/tensorflow_core/python/keras/engine/base_layer.py in __call__(self, inputs, *args, **kwargs)
    803               kwargs.pop('mask')
    804             inputs, outputs = self._set_connectivity_metadata_(
--> 805                 inputs, outputs, args, kwargs)
    806           self._handle_activity_regularization(inputs, outputs)
    807           self._set_mask_metadata(inputs, outputs, input_masks)

/opt/conda/lib/python3.7/site-packages/tensorflow_core/python/keras/engine/base_layer.py in _set_connectivity_metadata_(self, inputs, outputs, args, kwargs)
   2012     # This updates the layer history of the output tensor(s).
   2013     self._add_inbound_node(
-> 2014         input_tensors=inputs, output_tensors=outputs, arguments=arguments)
   2015     return inputs, outputs
   2016 

/opt/conda/lib/python3.7/site-packages/tensorflow_core/python/keras/engine/base_layer.py in _add_inbound_node(self, input_tensors, output_tensors, arguments)
   2042         input_tensors=input_tensors,
   2043         output_tensors=output_tensors,
-> 2044         arguments=arguments)
   2045 
   2046     # Update tensor history metadata.

/opt/conda/lib/python3.7/site-packages/tensorflow_core/python/keras/engine/node.py in __init__(self, outbound_layer, inbound_layers, node_indices, tensor_indices, input_tensors, output_tensors, arguments)
    108     self.input_shapes = nest.map_structure(backend.int_shape, input_tensors)
    109     # Nested structure of shape tuples, shapes of output_tensors.
--> 110     self.output_shapes = nest.map_structure(backend.int_shape, output_tensors)
    111 
    112     # Optional keyword arguments to layer's `call`.

/opt/conda/lib/python3.7/site-packages/tensorflow_core/python/util/nest.py in map_structure(func, *structure, **kwargs)
    566 
    567   return pack_sequence_as(
--> 568       structure[0], [func(*x) for x in entries],
    569       expand_composites=expand_composites)
    570 

/opt/conda/lib/python3.7/site-packages/tensorflow_core/python/util/nest.py in <listcomp>(.0)
    566 
    567   return pack_sequence_as(
--> 568       structure[0], [func(*x) for x in entries],
    569       expand_composites=expand_composites)
    570 

/opt/conda/lib/python3.7/site-packages/tensorflow_core/python/keras/backend.py in int_shape(x)
   1170   """
   1171   try:
-> 1172     shape = x.shape
   1173     if not isinstance(shape, tuple):
   1174       shape = tuple(shape.as_list())

AttributeError: 'NoneType' object has no attribute 'shape'

Please, can anyone help me fix this error?

1

1 Answers

1
votes

Generally the model output differs from model to model in the Huggingface transformers library. Check the documentation for what values are returned from the XLNet's "call()" function.

The last hidden state can generally be accessed in the following way:

model= TFAutoModel.from_pretrained("xlnet-base-cased")
# 'last_hidden_state' seems to be common to most of the transformer models
# refer: https://huggingface.co/transformers/model_doc/bert.html#tfbertmodel
output = model(tokenizer_ouput).last_hidden_state
x = tf.keras.layers.Dense(32, activation='relu')(x)
# The rest of you model

Making this change should solve your issue.