TF version: latest master , b083cea
Below is a simple example using TF2.0 eager mode, and it ran successful with MirroredStrategy, but error with ParameterServerStrategy.
Can TF2.0 eager mode support ParameterServerStrategy now ? I did not found a success example so far :(
from __future__ import absolute_import, division, print_function, unicode_literals
import tensorflow as tf
import tensorflow_datasets as tfds
import os, json
datasets, info = tfds.load(name='mnist', with_info=True, as_supervised=True)
mnist_train, mnist_test = datasets['train'], datasets['test']
os.environ['TF_CONFIG'] = json.dumps({
"cluster": {
"worker": ["localhost:12345"],
"ps": ["localhost:12346"]
},
"task": {"type": "worker", "index": 0}
})
strategy = tf.distribute.experimental.ParameterServerStrategy()
#strategy = tf.distribute.MirroredStrategy()
print('Number of devices: {}'.format(strategy.num_replicas_in_sync))
num_train_examples = info.splits['train'].num_examples
num_test_examples = info.splits['test'].num_examples
BUFFER_SIZE = 10000
BATCH_SIZE_PER_REPLICA = 64
BATCH_SIZE = BATCH_SIZE_PER_REPLICA * strategy.num_replicas_in_sync
def scale(image, label):
image = tf.cast(image, tf.float32)
image /= 255
return image, label
train_dataset = mnist_train.map(scale).shuffle(BUFFER_SIZE).batch(BATCH_SIZE)
eval_dataset = mnist_test.map(scale).batch(BATCH_SIZE)
with strategy.scope():
model = tf.keras.Sequential([
tf.keras.layers.Conv2D(32, 3, activation='relu', input_shape=(28, 28, 1)),
tf.keras.layers.MaxPooling2D(),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(64, activation='relu'),
tf.keras.layers.Dense(10, activation='softmax')
])
model.compile(loss='sparse_categorical_crossentropy',
optimizer=tf.keras.optimizers.Adam(),
metrics=['accuracy'])
checkpoint_dir = './training_checkpoints'
# Name of the checkpoint files
checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt_{epoch}")
# Function for decaying the learning rate.
# You can define any decay function you need.
def decay(epoch):
if epoch < 3:
return 1e-3
elif epoch >= 3 and epoch < 7:
return 1e-4
else:
return 1e-5
# Callback for printing the LR at the end of each epoch.
class PrintLR(tf.keras.callbacks.Callback):
def on_epoch_end(self, epoch, logs=None):
print('\nLearning rate for epoch {} is {}'.format(epoch + 1,
model.optimizer.lr.numpy()))
callbacks = [
tf.keras.callbacks.TensorBoard(log_dir='./logs'),
tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_prefix,
save_weights_only=True),
tf.keras.callbacks.LearningRateScheduler(decay),
PrintLR()
]
model.fit(train_dataset, epochs=12, callbacks=callbacks)
model.load_weights(tf.train.latest_checkpoint(checkpoint_dir))
eval_loss, eval_acc = model.evaluate(eval_dataset)
print('Eval loss: {}, Eval Accuracy: {}'.format(eval_loss, eval_acc))
error message
tf.keras.layers.Dense(10, activation='softmax') File "/usr/local/lib/python3.7/site-packages/tensorflow/python/training/tracking/base.py", line 456, in _method_wrapper result = method(self, *args, **kwargs) File "/usr/local/lib/python3.7/site-packages/tensorflow/python/keras/engine/sequential.py", line 116, in __init__ super(Sequential, self).__init__(name=name, autocast=False) File "/usr/local/lib/python3.7/site-packages/tensorflow/python/keras/engine/training.py", line 199, in __init__ self._init_batch_counters() File "/usr/local/lib/python3.7/site-packages/tensorflow/python/training/tracking/base.py", line 456, in _method_wrapper result = method(self, *args, **kwargs) File "/usr/local/lib/python3.7/site-packages/tensorflow/python/keras/engine/training.py", line 206, in _init_batch_counters self._train_counter = variables.Variable(0, dtype='int64', aggregation=agg) File "/usr/local/lib/python3.7/site-packages/tensorflow/python/ops/variables.py", line 261, in __call__ return cls._variable_v2_call(*args, **kwargs) File "/usr/local/lib/python3.7/site-packages/tensorflow/python/ops/variables.py", line 255, in _variable_v2_call shape=shape) File "/usr/local/lib/python3.7/site-packages/tensorflow/python/ops/variables.py", line 66, in getter return captured_getter(captured_previous, **kwargs) File "/usr/local/lib/python3.7/site-packages/tensorflow/python/distribute/distribute_lib.py", line 1769, in creator_with_resource_vars return self._create_variable(next_creator, **kwargs) File "/usr/local/lib/python3.7/site-packages/tensorflow/python/distribute/parameter_server_strategy.py", line 455, in _create_variable with ops.device(self._variable_device): File "/usr/local/lib/python3.7/site-packages/tensorflow/python/framework/ops.py", line 5183, in device "tf.device does not support functions when eager execution " RuntimeError: tf.device does not support functions when eager execution is enabled.