Using the R programming language, I am trying to follow this tutorial over here: Count number of observations per day, month and year in R
I create data at daily intervals and then took weekly sums of this data. To the "y.week" file, I want to add a "count" column that lists the number of observations in each week.
Here is the code below I am using:
#load libraries
library(xts)
library(ggplot2)
#create data
date_decision_made = seq(as.Date("2014/1/1"), as.Date("2016/1/1"),by="day")
date_decision_made <- format(as.Date(date_decision_made), "%Y/%m/%d")
property_damages_in_dollars <- rnorm(731,100,10)
final_data <- data.frame(date_decision_made, property_damages_in_dollars)
#aggregate and count by week
y.week <-aggregate(property_damages_in_dollars~format(as.Date(date_decision_made),
format="%W-%y"),data=final_data, FUN=sum)
counts_week <- data.frame(table(as.Date(index(y.week))))
y.week$count = count_week
But I don't think this is correct.
I then tried to do the same thing per month:
#aggregate and count by month
y.mon<-aggregate(property_damages_in_dollars~format(as.Date(date_decision_made),
format="%Y/%m"),data=final_data, FUN=sum)
counts_mon <- data.frame(table(as.Date(index(y.mon))))
y.mon$count = count_mon
Normally, I would have used the "dplyr" library to count by group (count by month, count by week), but I am not sure how to "tell" dplyr to consider observations in the same week (or in the same month) as a "group".
Can someone please tell me what I am doing wrong?
Thanks
EDIT: Possible answer (provided by Ronak Shah) :
By week:
date_decision_made = seq(as.Date("2014/1/1"), as.Date("2016/1/1"),by="day")
date_decision_made <- format(as.Date(date_decision_made), "%Y/%m/%d")
property_damages_in_dollars <- rnorm(731,100,10)
final_data <- data.frame(date_decision_made, property_damages_in_dollars)
final_data %>%
mutate(date_decision_made = as.Date(date_decision_made)) %>%
group_by(week = format(date_decision_made, "%W-%y")) %>%
summarise( total = sum(property_damages_in_dollars, na.rm = TRUE), Count = n())
By month:
date_decision_made = seq(as.Date("2014/1/1"), as.Date("2016/1/1"),by="day")
date_decision_made <- format(as.Date(date_decision_made), "%Y/%m/%d")
property_damages_in_dollars <- rnorm(731,100,10)
final_data <- data.frame(date_decision_made, property_damages_in_dollars)
final_data %>%
mutate(date_decision_made = as.Date(date_decision_made)) %>%
group_by(week = format(date_decision_made, "%Y-%m")) %>%
summarise( total = sum(property_damages_in_dollars, na.rm = TRUE), Count = n())