The actual error you get has to do nothing with metaprogramming, but with the fact that you are reassigning f, which was assigned a value before:
julia> f = 10
10
julia> f(x) = x + 1
ERROR: cannot define function f; it already has a value
Stacktrace:
[1] top-level scope at none:0
[2] top-level scope at REPL[2]:1
It just doesn't like that. Call either of those variables differently.
Now to the conceptual problem. First, what you do here is not "proper" metaprogramming in Julia: why deal with strings and parsing at all? You can work directly on expressions:
julia> function series(N)
S = Expr(:call, :+)
for i in 1:N
push!(S.args, :(x ^ $i))
end
return S
end
series (generic function with 1 method)
julia> series(3)
:(x ^ 1 + x ^ 2 + x ^ 3)
This makes use of the fact that + belongs to the class of expressions that are automatically collected in repeated applications.
Second, you don't call eval at the appropriate place. I assume you meant to say "give me the function of x, with the body being what series(4) returns". Now, while the following works:
julia> f3(x) = eval(series(4))
f3 (generic function with 1 method)
julia> f3(2)
30
it is not ideal, as you newly compile the body every time the function is called. If you do something like that, it is preferred to expand the code once into the body at function definition:
julia> @eval f2(x) = $(series(4))
f2 (generic function with 1 method)
julia> f2(2)
30
You just need to be careful with hygiene here. All depends on the fact that you know that the generated body is formulated in terms of x, and the function argument matches that. In my opinion, the most Julian way of implementing your idea is through a macro:
julia> macro series(N::Int, x)
S = Expr(:call, :+)
for i in 1:N
push!(S.args, :($x ^ $i))
end
return S
end
@series (macro with 1 method)
julia> @macroexpand @series(4, 2)
:(2 ^ 1 + 2 ^ 2 + 2 ^ 3 + 2 ^ 4)
julia> @series(4, 2)
30
No free variables remaining in the output.
Finally, as has been noted in the comments, there's a function (and corresponding macro) evalpoly in Base which generalizes your use case. Note that this function does not use code generation -- it uses a well-designed generated function, which in combination with the optimizations results in code that is usually equal to the macro-generated code.
evalpoly? - Oscar Smith