Following the approach of this answer I am trying to understand what happens exactly and how expressions and generated functions work in Julia within the concept of metaprogramming.
The goal is to optimize a recursive function using expressions and generated functions (for a concrete example you can have a look at the question answered in the link provided above).
Consider the following modified fibonacci function, in which I want to compute the fibonacci series up to n and multiply it by a number p.
The straightforward, recursive implementation would be
function fib(n::Integer, p::Real)
if n <= 1
return 1 * p
else
return n * fib(n-1, p)
end
end
As a first step, I could define a function which returns an expression instead of the computed value
function fib_expr(n::Integer, p::Symbol)
if n <= 1
return :(1 * $p)
else
return :($n * $(fib_expr(n-1, p)))
end
end
which, e.g. returns something like
julia> ex = fib_expr(3, :myp)
:(3 * (2 * (1myp)))
In this way I get an expression which is fully expanded and depends on the value assigned to the symbol myp. In this way I do not see the recursion anymore, basically I am metaprogramming: I created a function that creates another "function" (in this case we call it expression though).
I can now set myp = 0.5 and call eval(ex) to compute the result.
However, this is slower than the first approach.
What I can do though, is to generate a parametric function in the following way
@generated function fib_gen{n}(::Type{Val{n}}, p::Real)
return fib_expr(n, :p)
end
And magically, calling fib_gen(Val{3}, 0.5) gets things done, and is incredibly fast.
So, what is going on?
To my understanding, in the first call to fib_gen(Val{3}, 0.5), the parametric function fib_gen{Val{3}}(...) gets compiled and its content is the fully expanded expression obtained through fib_expr(3, :p), i.e. 3*2*1*p with p substituted with the input value.
The reason why it is so fast then, is because fib_gen is basically just a series of multiplications, whereas the original fib has to allocate on the stack every single recursive call making it slower, am I correct?
To give some numbers, here is my short benchmark using BenchmarkTools.
julia> @benchmark fib(10, 0.5)
...
mean time: 26.373 ns
...
julia> p = 0.5
0.5
julia> @benchmark eval(fib_expr(10, :p))
...
mean time: 177.906 μs
...
julia> @benchmark fib_gen(Val{10}, 0.5)
...
mean time: 2.046 ns
...
I have many questions:
- Why the second case is so slow?
- What exactly is and means
::Type{Val{n}}? (I copied that from the answer linked above) - Because of the JIT compiler, sometimes I am lost in what happens at compile-time and at run-time, as it is the case here...
Furthermore, I tried to combine fib_expr and fib_gen in a single function according to
@generated function fib_tot{n}(::Type{Val{n}}, p::Real)
if n <= 1
return :(1 * p)
else
return :(n * fib_tot(Val{n-1}, p))
end
end
which however is slow
julia> @benchmark fib_tot(Val{10}, 0.5)
...
mean time: 4.601 μs
...
What am I doing wrong here? Is it even possible to combine fib_expr and fib_gen in a single function?
I realize this is more a monograph rather than a question, however, even though I read the metaprogramming section few times, I am having a hard time to grasp everything, in particular with an applied example such as this one.
fib_genis actually going to be always faster thanfibas long as generating the expression(s) does not provoke aStackOverflowError. - stefabatfib. It depends on your use case whether it pays off, and for Fibonacci numers, it probably won't often. That's what I meant to say. - phipsgabler