I am working on a project in which I have to pass the output of CNN to Bi directional LSTM. I created the model as below but it is throwing 'incompatible' error. Please let me know where I am going wrong and how to fix this
model = Sequential()
model.add(Conv2D(filters = 16, kernel_size = 3,input_shape = (32,32,1)))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2,2),strides=1, padding='valid'))
model.add(Activation('relu'))
model.add(Conv2D(filters = 32, kernel_size=3))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Activation('relu'))
model.add(Dropout(0.25))
model.add(Conv2D(filters = 48, kernel_size=3))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Activation('relu'))
model.add(Dropout(0.25))
model.add(Conv2D(filters = 64, kernel_size=3))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(Dropout(0.25))
model.add(Conv2D(filters = 80, kernel_size=3))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(Bidirectional(LSTM(150, return_sequences=True)))
model.add(Dropout(0.3))
model.add(Bidirectional(LSTM(96)))
model.add(Dense(total_words/2, activation='relu', kernel_regularizer=regularizers.l2(0.01)))
model.add(Dense(total_words, activation='softmax'))
model.summary()
The error returned is:
ValueError Traceback (most recent call last)
<ipython-input-24-261befed7006> in <module>()
27 model.add(Activation('relu'))
28
---> 29 model.add(Bidirectional(LSTM(150, return_sequences=True)))
30 model.add(Dropout(0.3))
31 model.add(Bidirectional(LSTM(96)))
5 frames
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/input_spec.py in assert_input_compatibility(input_spec, inputs, layer_name)
178 'expected ndim=' + str(spec.ndim) + ', found ndim=' +
179 str(ndim) + '. Full shape received: ' +
--> 180 str(x.shape.as_list()))
181 if spec.max_ndim is not None:
182 ndim = x.shape.ndims
ValueError: Input 0 of layer bidirectional is incompatible with the layer: expected ndim=3, found ndim=4. Full shape received: [None, 1, 1, 80]