In the machine learning kaggle micro-courses you can find these datasets and code to help you making a prediction model for a competition: https://www.kaggle.com/ [put your user name here] /exercise-categorical-variables/edit
it gives you two datasets: 1 training dataset and 1 test dataset, which you will use to make your prediction and submit to see your ranking in the competition
So in:
Step 5: Generate test predictions and submit your results
I wrote this code:
EDITED
# Read the data
X = pd.read_csv('../input/train.csv', index_col='Id')
X_test = pd.read_csv('../input/test.csv', index_col='Id')
# Remove rows with missing target, separate target from predictors
X.dropna(axis=0, subset=['SalePrice'], inplace=True)
y = X.SalePrice
X.drop(['SalePrice'], axis=1, inplace=True)
# To keep things simple, we'll drop columns with missing values
cols_with_missing = [col for col in X.columns if X[col].isnull().any()]
X.drop(cols_with_missing, axis=1, inplace=True)
X_test.drop(cols_with_missing, axis=1, inplace=True)
#print(X_test.shape, X.shape)
X_test.head()
# Break off validation set from training data
X_train, X_valid, y_train, y_valid = train_test_split(X, y,
train_size=0.8, test_size=0.2,
random_state=0)
X_train.head()
#Asses Viability of method ONE-HOT
# Get number of unique entries in each column with categorical data
object_nunique = list(map(lambda col: X_train[col].nunique(), object_cols))
d = dict(zip(object_cols, object_nunique))
# Print number of unique entries by column, in ascending order
sorted(d.items(), key=lambda x: x[1])
# Columns that will be one-hot encoded ####<<<<I THINK THAT THE PROBLEM STARTS HERE>>>>#####
low_cardinality_cols = [col for col in object_cols if X_train[col].nunique() < 10]
##############For X_train
# Apply one-hot encoder to each column with categorical data
OH_encoder = OneHotEncoder(handle_unknown='ignore', sparse=False)
OH_cols_train = pd.DataFrame(OH_encoder.fit_transform(X_train[low_cardinality_cols]))
OH_cols_valid = pd.DataFrame(OH_encoder.transform(X_valid[low_cardinality_cols]))
# One-hot encoding removed index; put it back
OH_cols_train.index = X_train.index
OH_cols_valid.index = X_valid.index
# Remove categorical columns (will replace with one-hot encoding)
num_X_train = X_train.drop(object_cols, axis=1)
num_X_valid = X_valid.drop(object_cols, axis=1)
# Add one-hot encoded columns to numerical features
OH_X_train = pd.concat([num_X_train, OH_cols_train], axis=1)
OH_X_valid = pd.concat([num_X_valid, OH_cols_valid], axis=1)
##############For X_test
low_cardinality_cols = [col for col in object_cols if X_test[col].nunique() < 10]
# Apply one-hot encoder to each column with categorical data
OH_encoder = OneHotEncoder(handle_unknown='ignore', sparse=False)
#Se não retirar os NAs a linha abaixo dá erro
X_test.dropna(axis = 0, inplace=True)
OH_cols_test = pd.DataFrame(OH_encoder.fit_transform(X_test[low_cardinality_cols]))
#print(OH_cols_test.shape, OH_cols_train.shape)
# One-hot encoding removed index; put it back
OH_cols_test.index = X_test.index
# Remove categorical columns (will replace with one-hot encoding)
num_X_test = X_test.drop(object_cols, axis=1)
# Add one-hot encoded columns to numerical features
OH_X_test = pd.concat([num_X_test, OH_cols_test], axis=1)
#print(OH_X_test.shape ,OH_X_valid.shape)
# Define and fit model
model = RandomForestRegressor(n_estimators=100, criterion='mae', random_state=0)
model.fit(OH_X_train, y_train)
# Get validation predictions and MAE
preds_test = model.predict(OH_X_test)
# Save predictions in format used for competition scoring
output = pd.DataFrame({'Id': X_test.index,
'SalePrice': preds_test})
output.to_csv('submission.csv', index=False)
When I try to preprocess the datasets, I get different rows for training data and test data. Then I cant fit de model and make the prediction.
I think that I should split only the test dataset to make all that, but y has 1 more row than X_test and then I can't make the split.
So I thought that I had to use the training dataset to split and then fit it for the prediction of the test dataset