I have the following command below:
import pandas as pd
import numpy as np
from scipy import stats
np.random.seed(12345)
standarderrors1992 = stats.sem(np.random.normal(32000,200000,3650))
standarderrors1993 = stats.sem(np.random.normal(43000,100000,3650))
standarderrors1994 = stats.sem(np.random.normal(43500,140000,3650))
standarderrors1995 = stats.sem(np.random.normal(48000,70000,3650))
mean1992 = np.random.normal(32000,200000,3650).mean()
mean1993 = np.random.normal(43000,100000,3650).mean()
mean1994 = np.random.normal(43500,140000,3650).mean()
mean1995 = np.random.normal(48000,70000,3650).mean()
Here, I have found both the mean and standard error for a set of randomly chosen values.
limit = 3000
dict = {mean1992:standarderrors1992,mean1993:standarderrors1993,mean1994:standarderrors1994,mean1995:standarderrors1995}
for key,value in dict:
if limit > (key+(1.96*value)):
colour = 1
elif limit < (key+(1.96*value)):
colour = 0
elif (limit !> (key+(1.96*value))) && (limit !< (key-(1.96*value))):
colour = ((key+(1.96*value))-limit)/((key+(1.96*value))-(key-(1.96*value)))
Here, I am trying to put the values corresponding to the means and standard errors into a dictionary so that I can loop through both of them.
Ideally, I want to assign a particular value to the variable 'colour' depending on the values for the mean and standard error of a particular year. i.e. mean and SE for 1992
However, I keep getting the error:
TypeError: cannot unpack non-iterable int object
Coudld anyone let me know where I'm going wrong?