SymPy can really take you down rabbit holes. I agree with kampmani's solution, only if you can easily solve for y
on your own. However, in more general cases and in higher dimensions, his solution does not hold.
For example, the following will be slightly more tricky:
eq1 = Eq(z - x*y, 0)
eq2 = Eq(z - cos(x) - sin(y), 0)
eq3 = Eq(z + x*y, 0)
So here I am; killing a fly with a bazooka. The problem is that one was able to simplify the set of equations into a single equation with a single variable. But what if you can't do that (for example, if it was a larger system)?
In this case, one needs to use nonlinsolve
to solve the system of equations. But this does not provide numeric solutions directly and does not have a domain
argument.
So the following code unpacks the solutions. It goes through each tuple in the set of solutions and finds the numeric solutions for each component in the tuple. Then in order to get the full list, you need a Cartesian Product of each of those components. Repeat this for each tuple in the set of solutions.
The following should work for almost any system of equations in any dimension greater than 1. It produces numeric solutions in the cube whose boundaries are the domains
variable.
from sympy import *
import itertools # used for cartesian product
x, y, z = symbols('x y z', real=True)
domains = [Interval(-10, 10), Interval(-10, 10), Interval(-10, 10)] # The domain for each variable
eq1 = z - x*y
eq2 = z - cos(x) - sin(y)
eq3 = z + x*y
solutions = nonlinsolve([eq1, eq2, eq3], [x, y, z]) # the recommended function for this situation
print("---------Solution set----------")
print(solutions) # make sure the solution set is reasonable. If not, assertion error will occur
_n = Symbol("n", integer=True) # the solution set often seems to contain these symbols
numeric_solutions = []
assert isinstance(solutions, Set) # everything that I had tried resulted in a FiniteSet output
for solution in solutions.args: # loop through the different kinds of solutions
assert isinstance(solution, Tuple) # each solution should be a Tuple if in 2D or higher
list_of_numeric_values = [] # the list of lists of a single numerical value
for i, element in enumerate(solution):
if isinstance(element, Set):
numeric_values = list(element.intersect(domains[i]))
else: # assume it is an Expr
assert isinstance(element, Expr)
if _n.name in [s.name for s in element.free_symbols]: # if n is in the expression
# change our own _n to the solutions _n since they have different hidden
# properties and they cannot be substituted without having the same _n
_n = [s for s in element.free_symbols if s.name == _n.name][0]
numeric_values = [element.subs(_n, n)
for n in range(-10, 10) # just choose a bunch of sample values
if element.subs(_n, n) in domains[i]]
elif len(element.free_symbols) == 0: # we just have a single, numeric number
numeric_values = [element] if element in domains[i] else []
else: # otherwise we just have an Expr that depends on x or y
# we assume this numerical value is in the domain
numeric_values = [element]
# note that we may have duplicates, so we remove them with `set()`
list_of_numeric_values.append(set(numeric_values))
# find the resulting cartesian product of all our numeric_values
numeric_solutions += itertools.product(*list_of_numeric_values)
# remove duplicates again to be safe with `set()` but then retain ordering with `list()`
numeric_solutions = list(set(numeric_solutions))
print("--------`Expr` values----------")
for i in numeric_solutions:
print(list(i)) # turn it into a `list` since the output below is also a `list`.
print("--------`float` values---------")
for i in numeric_solutions:
print([N(j) for j in i]) # could have been converted into a `tuple` instead
In particular, it produces the following output for the new problem:
---------Solution set----------
FiniteSet((0, ImageSet(Lambda(_n, 2*_n*pi + 3*pi/2), Integers), 0))
--------`Expr` values----------
[0, -5*pi/2, 0]
[0, -pi/2, 0]
[0, 3*pi/2, 0]
--------`float` values---------
[0, -7.85398163397448, 0]
[0, -1.57079632679490, 0]
[0, 4.71238898038469, 0]
It was a lot of effort and probably not worth it but oh well.