1
votes

This is the code:

image = cv2.imread('MNIST_IMAGE.png')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
data = asarray(gray)
data=data/255.0
predictions=model.predict(data)

And this is the error, I get:

ValueError Traceback (most recent call last) in 3 data = asarray(gray) 4 data=data/255.0 ----> 5 predictions=model.predict(data)

~\Anaconda3\lib\site-packages\tensorflow_core\python\keras\engine\training.py in predict(self, x, batch_size, verbose, steps, callbacks, max_queue_size, workers, use_multiprocessing) 1011
max_queue_size=max_queue_size, 1012 workers=workers, -> 1013 use_multiprocessing=use_multiprocessing) 1014 1015 def reset_metrics(self):

~\Anaconda3\lib\site-packages\tensorflow_core\python\keras\engine\training_v2.py in predict(self, model, x, batch_size, verbose, steps, callbacks, max_queue_size, workers, use_multiprocessing, **kwargs) 496 model, ModeKeys.PREDICT, x=x, batch_size=batch_size, verbose=verbose, 497 steps=steps, callbacks=callbacks, max_queue_size=max_queue_size, --> 498 workers=workers, use_multiprocessing=use_multiprocessing, **kwargs) 499 500

~\Anaconda3\lib\site-packages\tensorflow_core\python\keras\engine\training_v2.py in _model_iteration(self, model, mode, x, y, batch_size, verbose, sample_weight, steps, callbacks, max_queue_size, workers, use_multiprocessing, **kwargs) 424 max_queue_size=max_queue_size, 425 workers=workers, --> 426 use_multiprocessing=use_multiprocessing) 427 total_samples = _get_total_number_of_samples(adapter) 428 use_sample = total_samples is not None

~\Anaconda3\lib\site-packages\tensorflow_core\python\keras\engine\training_v2.py in _process_inputs(model, mode, x, y, batch_size, epochs, sample_weights, class_weights, shuffle, steps, distribution_strategy, max_queue_size, workers, use_multiprocessing) 644 standardize_function = None 645 x, y, sample_weights = standardize( --> 646 x, y, sample_weight=sample_weights) 647 elif adapter_cls is data_adapter.ListsOfScalarsDataAdapter: 648 standardize_function = standardize

~\Anaconda3\lib\site-packages\tensorflow_core\python\keras\engine\training.py in _standardize_user_data(self, x, y, sample_weight, class_weight, batch_size, check_steps, steps_name, steps, validation_split, shuffle, extract_tensors_from_dataset) 2381 is_dataset=is_dataset,
2382 class_weight=class_weight, -> 2383 batch_size=batch_size) 2384 2385 def _standardize_tensors(self, x, y, sample_weight, run_eagerly, dict_inputs,

~\Anaconda3\lib\site-packages\tensorflow_core\python\keras\engine\training.py in _standardize_tensors(self, x, y, sample_weight, run_eagerly, dict_inputs, is_dataset, class_weight, batch_size) 2408
feed_input_shapes, 2409 check_batch_axis=False, # Don't enforce the batch size. -> 2410 exception_prefix='input') 2411 2412 # Get typespecs for the input data and sanitize it if necessary.

~\Anaconda3\lib\site-packages\tensorflow_core\python\keras\engine\training_utils.py in standardize_input_data(data, names, shapes, check_batch_axis, exception_prefix) 571 ': expected ' + names[i] + ' to have ' + 572 str(len(shape)) + ' dimensions, but got array ' --> 573 'with shape ' + str(data_shape)) 574 if not check_batch_axis: 575 data_shape = data_shape[1:]

ValueError: Error when checking input: expected flatten_1_input to have 3 dimensions, but got array with shape (28, 28)

1

1 Answers

1
votes

Add batch dimension:

predictions = model.predict(data[None, ...])

Or like this (both are equivalent):

predictions = model.predict(np.expand_dims(data, 0))