I am fairly new to TensorFlow and LSTM architecture. I have an issue with figuring out input and output (x_train,x_test,y_train,y_test) for my dataset.
Shape of my inputs originally:
- X_train: (366,4)
- X_test: (104,4)
- Y_train: (366,)
- Y_test: (104,)
The Ytrain and Ytest are a series of stock prices. The Xtrain and Xtest are four features that I want to learn to predict the stock prices.
# Splitting the training and testing data
train_start_date = '2010-01-08'
train_end_date = '2017-01-06'
test_start_date = '2017-01-13'
test_end_date = '2019-01-04'
train = df.ix[train_start_date : train_end_date]
test = df.ix[test_start_date:test_end_date]
X_test = sentimentScorer(test)
X_train = sentimentScorer(train)
Y_test = test['prices']
Y_train = train['prices']
#Conversion in 3D array for LSTM INPUT
X_test = X_test.reshape(1, 104, 4)
X_train = X_train.reshape(1, 366, 4)
model = Sequential()
model.add(LSTM(128, input_shape=(366,4), activation='relu',
return_sequences=True))
model.add(Dropout(0.2))
model.add(LSTM(128, activation='relu'))
model.add(Dropout(0.1))
model.add(Dense(32, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(10, activation='softmax'))
opt = tf.keras.optimizers.Adam(lr=0.001, decay=1e-6)
# Compile model
model.compile(
loss='sparse_categorical_crossentropy',
optimizer=opt,
metrics=['accuracy'],
)
model.fit(X_train,
Y_train,
epochs=3,
validation_data=(X_test, Y_test))
This is the error generated:
--------------------------------------------------------------------------- ValueError Traceback (most recent call last) in 65 Y_train, 66 epochs=3, ---> 67 validation_data=(X_test, Y_test))
c:\users\talal\appdata\local\programs\python\python36\lib\site-packages\tensorflow\python\keras\engine\training.py in fit(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, **kwargs) 1507 steps_name='steps_per_epoch', 1508 steps=steps_per_epoch, -> 1509 validation_split=validation_split) 1510 1511 # Prepare validation data.
c:\users\talal\appdata\local\programs\python\python36\lib\site-packages\tensorflow\python\keras\engine\training.py in _standardize_user_data(self, x, y, sample_weight, class_weight, batch_size, check_steps, steps_name, steps, validation_split) 991 x, y = next_element 992 x, y, sample_weights = self._standardize_weights(x, y, sample_weight, --> 993 class_weight, batch_size) 994 return x, y, sample_weights 995
c:\users\talal\appdata\local\programs\python\python36\lib\site-packages\tensorflow\python\keras\engine\training.py in _standardize_weights(self, x, y, sample_weight, class_weight, batch_size) 1110 feed_input_shapes, 1111
check_batch_axis=False, # Don't enforce the batch size. -> 1112 exception_prefix='input') 1113 1114 if y is not None:c:\users\talal\appdata\local\programs\python\python36\lib\site-packages\tensorflow\python\keras\engine\training_utils.py in standardize_input_data(data, names, shapes, check_batch_axis, exception_prefix) 314 ': expected ' + names[i] + ' to have ' + 315 str(len(shape)) + ' dimensions, but got array ' --> 316 'with shape ' + str(data_shape)) 317 if not check_batch_axis: 318 data_shape = data_shape[1:]
ValueError: Error when checking input: expected lstm_18_input to have 3 dimensions, but got array with shape (366, 4)