1
votes

my data set has got 17 columns and > 80.000 variables. The data set consists entirely of numeric variables. Some columns are dummy variables. I want to use my data set to apply different hard and soft clustering algorithms and compare them. Which methods of dimension reduction and clustering algorithms are recommended for large data sets?

Here is a part of my dataset:

dput(rbind(head(WKA_ohneJB, 10), tail(WKA_ohneJB, 10)))
structure(list(X = c(1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 
821039L, 821040L, 821041L, 821042L, 821043L, 821044L, 821045L, 
821046L, 821047L, 821048L), BASKETS_NZ = c(1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L), 
    LOGONS = c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 0L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L), PIS = c(71L, 39L, 50L, 4L, 
    13L, 4L, 30L, 65L, 13L, 31L, 111L, 33L, 3L, 46L, 11L, 8L, 
    17L, 68L, 65L, 15L), PIS_AP = c(14L, 2L, 4L, 0L, 0L, 0L, 
    1L, 0L, 2L, 1L, 13L, 0L, 0L, 2L, 1L, 0L, 3L, 8L, 0L, 1L), 
    PIS_DV = c(3L, 19L, 4L, 1L, 0L, 0L, 6L, 2L, 2L, 3L, 38L, 
    8L, 0L, 5L, 2L, 0L, 1L, 0L, 3L, 2L), PIS_PL = c(0L, 5L, 8L, 
    2L, 0L, 0L, 0L, 24L, 0L, 6L, 32L, 8L, 0L, 0L, 4L, 0L, 0L, 
    0L, 0L, 0L), PIS_SDV = c(18L, 0L, 11L, 0L, 0L, 0L, 0L, 0L, 
    0L, 1L, 6L, 0L, 0L, 13L, 0L, 0L, 1L, 15L, 1L, 0L), PIS_SHOPS = c(3L, 
    24L, 13L, 3L, 0L, 0L, 6L, 28L, 2L, 11L, 71L, 16L, 2L, 5L, 
    6L, 0L, 1L, 0L, 3L, 2L), PIS_SR = c(19L, 0L, 14L, 0L, 0L, 
    0L, 2L, 23L, 0L, 3L, 6L, 0L, 0L, 20L, 0L, 0L, 3L, 32L, 1L, 
    0L), QUANTITY = c(13L, 2L, 18L, 1L, 14L, 1L, 4L, 2L, 5L, 
    1L, 5L, 2L, 2L, 4L, 1L, 3L, 2L, 8L, 17L, 8L), WKA = c(1L, 
    1L, 1L, 1L, 1L, 1L, 0L, 0L, 1L, 0L, 1L, 1L, 1L, 1L, 1L, 1L, 
    0L, 0L, 1L, 1L), NEW_CUST = c(0L, 0L, 0L, 0L, 0L, 0L, 0L, 
    0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L), EXIST_CUST = c(1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 0L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L), WEB_CUST = c(1L, 0L, 0L, 0L, 1L, 1L, 0L, 
    1L, 1L, 1L, 1L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 1L), MOBILE_CUST = c(0L, 
    1L, 1L, 1L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 
    1L, 0L, 1L, 0L), TABLET_CUST = c(0L, 0L, 0L, 0L, 0L, 0L, 
    0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 1L, 0L, 1L, 0L, 0L), 
    LOGON_CUST_STEP2 = c(0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 
    0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L)), row.names = c(1L, 
2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 821039L, 821040L, 821041L, 
821042L, 821043L, 821044L, 821045L, 821046L, 821047L, 821048L
), class = "data.frame")
1
hey.. I think it's more important to find a suitable method for the distribution in your data rather ask for some broad umbrella, what-is-good-for-big-data methodsStupidWolf
It seems that your data has a lot of zeros.. you might wanna think about whether this poses any problems. Otherwise you don't have a lot of columns, so clustering / dimension reduction should be ok with these methods cran.r-project.org/web/packages/dimRed/vignettes/…StupidWolf
Here is the correct link to the Labs: faculty.marshall.usc.edu/gareth-james/ISL/…Peter

1 Answers

0
votes

17x80000 is not so large. You should be able to apply any clustering method on this dataset. It is hard to tell what will work best not knowing the data and the problem in detail. Have a look at "Introduction to Statistical Learning", Ch. 10 for clustering methods. There are also some very instructive R labs for this chapter, which should give you a very quick start.

For further reading also consider "Elements of Statistical Learning" (Chapter 13 onwards).