1
votes

I have a large data set and I want to write a custom merge function to use with apply but I can't solve a certain issue. I can't use a loop as it will take too long. The data roughly looks like this;

#     [ Name, Strand, Start, End ]

R1 = c( 'GeneA', '+', 1000, 1500 )
R2 = c( 'GeneA', '+', 1510, 2000 )
R3 = c( 'GeneA', '+', 2001, 2500 )
R4 = c( 'GeneB', '-', 3100, 4000 )

The data is a data.frame with rows R1:R4

So far I can get a function which compares Ri and Rj (j = i +1) and merges them if Name is the same, Strand is the same, and the gap between them is less then 100.

GAP = Ri[End] - Rj[Start]

If I apply the function to each row and build up the output. The function output then should create

R1 = c( 'GeneA', '+', 1000, 2500 )
R4 = c( 'GeneB', '-', 3100, 4000 )

I can get a working function which can use apply to merge two consecutive elements into one but I can't figure out how to merge three consecutive elements. One ugly solution was to run the two consecutive element merger function until no additional mergers are made but this is not efficient. I'm a bit stuck for ideas and any insights would be appreciated.

EDIT: to clarify, the data is ordered by Start position on consecutive chromosomes (not shown) and each gene name occurs multiple times in the data set at different positions (ie. GeneA can be 1000-2500 and then again at 4000-5000, and I don't want to merge those two genes, only consecutive ones).

EDIT 2: I have used Tim P solution below. A problem has arisen in the efficiency of Merging. Also is there a way to post text files to stack overflow so I can show what the data really looks like and then post my script so far?

 # Let ValidMerge be a logical vector of MergeDown corresponding to the rows in the data
 # as defined by TimP below
 # The data.frame is called RMDB 
 # TeMerge function is previously defined to merge two rows Ri and Rj into one entry
 # which spans the start of Ri to the end of Rj (with same name and strand)

 COUNT = 0
 RMDB.OUT = 0

 while (COUNT < nrow(RMDB)) { # Cycle through all rows of RMDB
  COUNT = COUNT + 1

  # Is this position a merger start?
    # If yes, then returns position in startpt
    # which will be the end position in endpt
    # If no, returns 0

  Merge = match(COUNT,startpt,nomatch=0) 

  if ( Merge == 0 ){
    # No merge starts at this position
    RMDB.OUT = rbind(RMDB.OUT,RMDB[COUNT,]) # Append COUNT Row to output

  }else{
    # Merge COUNT row in RMDB to its endpoint 

      RMDB.OUT = rbind(RMDB.OUT,
                     TeMerge(RMDB[COUNT,],RMDB[endpt[Merge],]))

    #print(paste('Merging Row',COUNT,' and Row',endpt[Merge]))

    COUNT = endpt[Merge] # Move Count to the endpoint      
  }
}

This script gives exactly the results I am interested in, the only problem is that my data.frame has 5 000 000 entries and I would like to run the analysis using several parameters for GAP size to compare the results. Is there a way which I can rewrite this part of the code to be more efficient? Everything up until this point runs in reasonable amount of time (~couple of minutes). This part of has been going for 3+ hours on a 700 000 subset of the data.

EDIT 3: The spiked data which has all cases at the top (MIR3). Ignore Columns 1:4,8,11:15.

dput(RMDB) structure(list(V1 = c(3612L, 318L, 318L, 318L, 318L, 318L, 318L, 318L, 318L, 318L, 318L, 318L, 318L, 318L, 741L, 444L, 741L, 407L, 2059L, 407L, 656L, 2058L, 257L, 4051L, 456L, 351L, 850L, 335L, 1000L, 1566L, 236L, 588L, 3877L, 750L, 2292L, 783L, 747L, 666L, 260L, 1118L, 341L, 7010L, 320L, 7010L, 249L, 458L, 24L, 631L, 631L, 875L), V2 = c(11.4, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 18.7, 11.6, 24.9, 28.8, 14.1, 28.8, 23.6, 18.3, 25, 7, 8.2, 23.6, 24.9, 29.5, 13.5, 19.4, 34.8, 17.4, 22.9, 27.6, 12, 26.6, 30.4, 12.9, 38.5, 35.4, 27.8, 19.2, 0, 17.3, 21.2, 19.3, 0, 3.9, 26.6, 22.6), V3 = c(27, 3.8, 3.8, 3.8, 3.8, 3.8, 3.8, 3.8, 3.8, 3.8, 3.8, 3.8, 3.8, 3.8, 4.5, 0, 0, 7.3, 0.3, 7.3, 12.2, 4.9, 0, 0.4, 0, 1.8, 15.1, 12.7, 0, 3.6, 3, 7.5, 14, 9.4, 0, 14.1, 4.1, 4, 1.4, 9.4, 5.9, 2.7, 0, 9.3, 1, 0, 0, 0, 1.8, 9.5), V4 = c(1.3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3.1, 1.1, 3, 0.3, 3, 3, 0, 0, 0, 0, 3.6, 0.8, 2.7, 0, 2.8, 0.4, 0.8, 1.6, 6.4, 0, 3.8, 3.7, 0, 0, 2.6, 1.5, 2.5, 2.4, 1.4, 2, 5, 0, 0, 0.6, 0.5), V5 = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L), .Label = "chr1", class = "factor"), V6 = c(10469L, 20001L, 20210L, 21000L, 21201L, 22000L, 22201L, 23000L, 23201L, 20000L, 20001L, 24001L, 24205L, 24405L, 0L, 30855L, 30953L, 31293L, 31436L, 31734L, 32841L, 33048L, 33466L, 33529L, 34048L, 34451L, 34565L, 35217L, 35367L, 37045L, 37733L, 38059L, 38256L, 39465L, 39624L, 39925L, 40333L, 40629L, 40736L, 41380L, 42370L, 43243L, 44836L, 44877L, 45887L, 46079L, 46217L, 46416L, 46553L, 46893L), V7 = c(11447L, 20200L, 20400L, 21200L, 21400L, 22200L, 22400L, 23200L, 23400L, 20001L, 20200L, 24200L, 24400L, 24600L, 0L, 30952L, 31131L, 31435L, 31733L, 31754L, 33037L, 33456L, 33509L, 34041L, 34108L, 34560L, 34921L, 35366L, 35499L, 37431L, 37861L, 38191L, 39464L, 39623L, 39924L, 40294L, 40626L, 40729L, 40878L, 42285L, 42504L, 44835L, 44876L, 45753L, 45987L, 46198L, 46240L, 46493L, 46722L, 47092L), V8 = structure(c(38L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 36L, 35L, 34L, 33L, 32L, 31L, 30L, 29L, 28L, 27L, 26L, 25L, 24L, 23L, 22L, 21L, 20L, 19L, 18L, 17L, 16L, 15L, 14L, 13L, 12L, 11L, 10L, 9L, 8L, 7L, 6L, 5L, 4L, 3L, 2L, 1L), .Label = c("(249203529)", "(249203899)", "(249204128)", "(249204381)", "(249204423)", "(249204634)", "(249204868)", "(249205745)", "(249205786)", "(249208117)", "(249208336)", "(249209743)", "(249209892)", "(249209995)", "(249210327)", "(249210697)", "(249210998)", "(249211157)", "(249212430)", "(249212760)", "(249213190)", "(249215122)", "(249215255)", "(249215700)", "(249216061)", "(249216513)", "(249216580)", "(249217112)", "(249217165)", "(249217584)", "(249218867)", "(249218888)", "(249219186)", "(249219490)", "(249219669)", "(249219773)", "(249235266)", "(249239174)"), class = "factor"), V9 = structure(c(2L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 2L), .Label = c("+", "C"), class = "factor"), V10 = structure(c(32L, 23L, 23L, 23L, 23L, 23L, 24L, 23L, 23L, 23L, 23L, 23L, 23L, 23L, 34L, 33L, 27L, 26L, 1L, 26L, 22L, 12L, 5L, 14L, 13L, 16L, 30L, 25L, 2L, 7L, 16L, 15L, 29L, 28L, 3L, 28L, 15L, 4L, 18L, 8L, 19L, 10L, 31L, 10L, 9L, 11L, 6L, 17L, 20L, 21L ), .Label = c("AluJo", "AluJr", "AluSx", "AluSz6", "AluYc", "AT_rich", "Charlie5", "ERVL-E-int", "L1M5", "L1MA8", "L1MA9", "L1MB5", "L1P1", "L1PA6", "L2a", "L2c", "LTR12F", "LTR16C", "MamRep1527", "MER45A", "MER58A", "MIR", "MIR3", "MIR3a", "MIRb", "MIRc", "MLT1A", "MLT1E1A", "MLT1E1A-int", "MLT1J2", "(TAAA)n", "TAR1", "(TC)n", "XXXXX"), class = "factor"), V11 = structure(c(10L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 14L, 11L, 9L, 13L, 12L, 13L, 13L, 3L, 12L, 3L, 3L, 4L, 9L, 13L, 12L, 1L, 4L, 4L, 9L, 9L, 12L, 9L, 4L, 12L, 8L, 8L, 6L, 3L, 11L, 3L, 3L, 3L, 5L, 7L, 2L, 1L), .Label = c("DNA/hAT-Charlie", "DNA/hAT-Tip100", "LINE/L1", "LINE/L2", "Low_complexity", "LTR", "LTR/ERV1", "LTR/ERVL", "LTR/ERVL-MaLR", "Satellite/telo", "Simple_repeat", "SINE/Alu", "SINE/MIR", "XXXXXXXX"), class = "factor"), V12 = structure(c(19L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 2L, 9L, 8L, 25L, 2L, 10L, 9L, 23L, 2L, 1L, 15L, 12L, 1L, 6L, 2L, 11L, 16L, 13L, 7L, 2L, 2L, 8L, 14L, 1L, 3L, 26L, 17L, 18L, 9L, 21L, 22L, 24L, 2L, 4L, 27L, 20L), .Label = c("(0)", "1", "(113)", "(115)", "(119)", "(13)", "131", "173", "2", "218", "2234", "(231)", "2705", "2923", "2970", "3242", "359", "3715", "(399)", "(4)", "5306", "5334", "5746", "6167", "67", "(685)", "7"), class = "factor"), V13 = c(1712L, 143L, 143L, 143L, 143L, 143L, 143L, 143L, 143L, 143L, 143L, 143L, 143L, 143L, 162L, 96L, 349L, 217L, 298L, 238L, 216L, 6174L, 44L, 6154L, 3030L, 3156L, 448L, 255L, 133L, 2623L, 3375L, 2846L, 1489L, 172L, 301L, 666L, 3217L, 312L, 376L, 4982L, 499L, 5305L, 41L, 6290L, 5433L, 6280L, 24L, 404L, 178L, 220L), V14 = structure(c(23L, 24L, 24L, 24L, 24L, 24L, 24L, 24L, 24L, 24L, 24L, 24L, 24L, 24L, 8L, 1L, 10L, 25L, 4L, 13L, 21L, 1L, 11L, 26L, 15L, 14L, 20L, 30L, 5L, 2L, 1L, 27L, 1L, 18L, 3L, 4L, 7L, 6L, 9L, 19L, 22L, 29L, 1L, 2L, 28L, 16L, 1L, 17L, 1L, 12L), .Label = c("(0)", "(1)", "(11)", "(14)", "(179)", "208", "(209)", "(212)", "232", "(25)", "(255)", "3", "(30)", "3049", "(3116)", "(32)", "327", "(388)", "4016", "41", "(46)", "(470)", "483", "49", "(51)", "5640", "(573)", "(691)", "(838)", "91"), class = "factor"), V15 = c(2L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 22L, 23L, 22L, 24L, 25L, 24L, 26L, 27L, 28L, 29L, 30L, 31L, 32L, 33L, 34L, 35L, 36L, 37L, 38L, 38L, 39L, 38L, 37L, 40L, 41L, 42L, 43L, 44L, 45L, 44L, 46L, 47L, 48L, 49L, 50L, 51L)), .Names = c("V1", "V2", "V3", "V4", "V5", "V6", "V7", "V8", "V9", "V10", "V11", "V12", "V13", "V14", "V15"), class = "data.frame", row.names = c(NA, -50L))

And here is the output after ValidMerge is applied.

dput(RMDB.OUT) structure(list(V1 = c(3612L, NA, NA, 318L, 318L, 318L, 318L, 318L, 318L, NA, 741L, 444L, 741L, 407L, 2059L, 407L, 656L, 2058L, 257L, 4051L, 456L, 351L, 850L, 335L, 1000L, 1566L, 236L, 588L, 3877L, 750L, 2292L, 783L, 747L, 666L, 260L, 1118L, 341L, 7010L, 320L, 7010L, 249L, 458L, 24L, 631L, 631L, 875L), V2 = c(11.4, NA, NA, 23, 23, 23, 23, 23, 23, NA, 18.7, 11.6, 24.9, 28.8, 14.1, 28.8, 23.6, 18.3, 25, 7, 8.2, 23.6, 24.9, 29.5, 13.5, 19.4, 34.8, 17.4, 22.9, 27.6, 12, 26.6, 30.4, 12.9, 38.5, 35.4, 27.8, 19.2, 0, 17.3, 21.2, 19.3, 0, 3.9, 26.6, 22.6), V3 = c(27, NA, NA, 3.8, 3.8, 3.8, 3.8, 3.8, 3.8, NA, 4.5, 0, 0, 7.3, 0.3, 7.3, 12.2, 4.9, 0, 0.4, 0, 1.8, 15.1, 12.7, 0, 3.6, 3, 7.5, 14, 9.4, 0, 14.1, 4.1, 4, 1.4, 9.4, 5.9, 2.7, 0, 9.3, 1, 0, 0, 0, 1.8, 9.5 ), V4 = c(1.3, NA, NA, 0, 0, 0, 0, 0, 0, NA, 0, 3.1, 1.1, 3, 0.3, 3, 3, 0, 0, 0, 0, 3.6, 0.8, 2.7, 0, 2.8, 0.4, 0.8, 1.6, 6.4, 0, 3.8, 3.7, 0, 0, 2.6, 1.5, 2.5, 2.4, 1.4, 2, 5, 0, 0, 0.6, 0.5), V5 = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L), .Label = "chr1", class = "factor"), V6 = c(10469L, 20001L, 21000L, 22000L, 22201L, 23000L, 23201L, 20000L, 20001L, 24001L, 0L, 30855L, 30953L, 31293L, 31436L, 31734L, 32841L, 33048L, 33466L, 33529L, 34048L, 34451L, 34565L, 35217L, 35367L, 37045L, 37733L, 38059L, 38256L, 39465L, 39624L, 39925L, 40333L, 40629L, 40736L, 41380L, 42370L, 43243L, 44836L, 44877L, 45887L, 46079L, 46217L, 46416L, 46553L, 46893L), V7 = c(11447L, 20400L, 21400L, 22200L, 22400L, 23200L, 23400L, 20001L, 20200L, 24600L, 0L, 30952L, 31131L, 31435L, 31733L, 31754L, 33037L, 33456L, 33509L, 34041L, 34108L, 34560L, 34921L, 35366L, 35499L, 37431L, 37861L, 38191L, 39464L, 39623L, 39924L, 40294L, 40626L, 40729L, 40878L, 42285L, 42504L, 44835L, 44876L, 45753L, 45987L, 46198L, 46240L, 46493L, 46722L, 47092L), V8 = structure(c(38L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 36L, 35L, 34L, 33L, 32L, 31L, 30L, 29L, 28L, 27L, 26L, 25L, 24L, 23L, 22L, 21L, 20L, 19L, 18L, 17L, 16L, 15L, 14L, 13L, 12L, 11L, 10L, 9L, 8L, 7L, 6L, 5L, 4L, 3L, 2L, 1L), .Label = c("(249203529)", "(249203899)", "(249204128)", "(249204381)", "(249204423)", "(249204634)", "(249204868)", "(249205745)", "(249205786)", "(249208117)", "(249208336)", "(249209743)", "(249209892)", "(249209995)", "(249210327)", "(249210697)", "(249210998)", "(249211157)", "(249212430)", "(249212760)", "(249213190)", "(249215122)", "(249215255)", "(249215700)", "(249216061)", "(249216513)", "(249216580)", "(249217112)", "(249217165)", "(249217584)", "(249218867)", "(249218888)", "(249219186)", "(249219490)", "(249219669)", "(249219773)", "(249235266)", "(249239174)"), class = "factor"), V9 = structure(c(2L, 1L, 2L, 2L, 2L, 2L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 2L), .Label = c("+", "C"), class = "factor"), V10 = structure(c(32L, 23L, 23L, 23L, 24L, 23L, 23L, 23L, 23L, 23L, 34L, 33L, 27L, 26L, 1L, 26L, 22L, 12L, 5L, 14L, 13L, 16L, 30L, 25L, 2L, 7L, 16L, 15L, 29L, 28L, 3L, 28L, 15L, 4L, 18L, 8L, 19L, 10L, 31L, 10L, 9L, 11L, 6L, 17L, 20L, 21L), .Label = c("AluJo", "AluJr", "AluSx", "AluSz6", "AluYc", "AT_rich", "Charlie5", "ERVL-E-int", "L1M5", "L1MA8", "L1MA9", "L1MB5", "L1P1", "L1PA6", "L2a", "L2c", "LTR12F", "LTR16C", "MamRep1527", "MER45A", "MER58A", "MIR", "MIR3", "MIR3a", "MIRb", "MIRc", "MLT1A", "MLT1E1A", "MLT1E1A-int", "MLT1J2", "(TAAA)n", "TAR1", "(TC)n", "XXXXX"), class = "factor"), V11 = structure(c(10L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 14L, 11L, 9L, 13L, 12L, 13L, 13L, 3L, 12L, 3L, 3L, 4L, 9L, 13L, 12L, 1L, 4L, 4L, 9L, 9L, 12L, 9L, 4L, 12L, 8L, 8L, 6L, 3L, 11L, 3L, 3L, 3L, 5L, 7L, 2L, 1L), .Label = c("DNA/hAT-Charlie", "DNA/hAT-Tip100", "LINE/L1", "LINE/L2", "Low_complexity", "LTR", "LTR/ERV1", "LTR/ERVL", "LTR/ERVL-MaLR", "Satellite/telo", "Simple_repeat", "SINE/Alu", "SINE/MIR", "XXXXXXXX"), class = "factor"), V12 = structure(c(19L, NA, NA, 5L, 5L, 5L, 5L, 5L, 5L, NA, 2L, 9L, 8L, 25L, 2L, 10L, 9L, 23L, 2L, 1L, 15L, 12L, 1L, 6L, 2L, 11L, 16L, 13L, 7L, 2L, 2L, 8L, 14L, 1L, 3L, 26L, 17L, 18L, 9L, 21L, 22L, 24L, 2L, 4L, 27L, 20L), .Label = c("(0)", "1", "(113)", "(115)", "(119)", "(13)", "131", "173", "2", "218", "2234", "(231)", "2705", "2923", "2970", "3242", "359", "3715", "(399)", "(4)", "5306", "5334", "5746", "6167", "67", "(685)", "7"), class = "factor"), V13 = c(1712L, NA, NA, 143L, 143L, 143L, 143L, 143L, 143L, NA, 162L, 96L, 349L, 217L, 298L, 238L, 216L, 6174L, 44L, 6154L, 3030L, 3156L, 448L, 255L, 133L, 2623L, 3375L, 2846L, 1489L, 172L, 301L, 666L, 3217L, 312L, 376L, 4982L, 499L, 5305L, 41L, 6290L, 5433L, 6280L, 24L, 404L, 178L, 220L), V14 = structure(c(23L, NA, NA, 24L, 24L, 24L, 24L, 24L, 24L, NA, 8L, 1L, 10L, 25L, 4L, 13L, 21L, 1L, 11L, 26L, 15L, 14L, 20L, 30L, 5L, 2L, 1L, 27L, 1L, 18L, 3L, 4L, 7L, 6L, 9L, 19L, 22L, 29L, 1L, 2L, 28L, 16L, 1L, 17L, 1L, 12L), .Label = c("(0)", "(1)", "(11)", "(14)", "(179)", "208", "(209)", "(212)", "232", "(25)", "(255)", "3", "(30)", "3049", "(3116)", "(32)", "327", "(388)", "4016", "41", "(46)", "(470)", "483", "49", "(51)", "5640", "(573)", "(691)", "(838)", "91"), class = "factor"), V15 = c(2L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 22L, 23L, 22L, 24L, 25L, 24L, 26L, 27L, 28L, 29L, 30L, 31L, 32L, 33L, 34L, 35L, 36L, 37L, 38L, 38L, 39L, 38L, 37L, 40L, 41L, 42L, 43L, 44L, 45L, 44L, 46L, 47L, 48L, 49L, 50L, 51L)), .Names = c("V1", "V2", "V3", "V4", "V5", "V6", "V7", "V8", "V9", "V10", "V11", "V12", "V13", "V14", "V15"), class = "data.frame", row.names = c(NA, -46L))

Edit 4: Sorry about that, here is the simplified version: Initial Data.frame

dput(RMDB.cut)

structure(list(Chromosome = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L), .Label = "chr1", class = "factor"), Start = c(10469L, 20001L, 20210L, 21000L, 21201L, 22000L, 22201L, 23000L, 23201L, 20000L, 20001L, 24001L, 24205L, 24405L, 0L, 30855L, 30953L, 31293L, 31436L, 31734L), End = c(11447L, 20200L, 20400L, 21200L, 21400L, 22200L, 22400L, 23200L, 23400L, 20001L, 20200L, 24200L, 24400L, 24600L, 0L, 30952L, 31131L, 31435L, 31733L, 31754L), (Left) = structure(c(38L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 36L, 35L, 34L, 33L, 32L, 31L), .Label = c("(249203529)", "(249203899)", "(249204128)", "(249204381)", "(249204423)", "(249204634)", "(249204868)", "(249205745)", "(249205786)", "(249208117)", "(249208336)", "(249209743)", "(249209892)", "(249209995)", "(249210327)", "(249210697)", "(249210998)", "(249211157)", "(249212430)", "(249212760)", "(249213190)", "(249215122)", "(249215255)", "(249215700)", "(249216061)", "(249216513)", "(249216580)", "(249217112)", "(249217165)", "(249217584)", "(249218867)", "(249218888)", "(249219186)", "(249219490)", "(249219669)", "(249219773)", "(249235266)", "(249239174)"), class = "factor"), Strand = structure(c(2L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L), .Label = c("+", "C"), class = "factor"), repName = structure(c(32L, 23L, 23L, 23L, 23L, 23L, 24L, 23L, 23L, 23L, 23L, 23L, 23L, 23L, 34L, 33L, 27L, 26L, 1L, 26L), .Label = c("AluJo", "AluJr", "AluSx", "AluSz6", "AluYc", "AT_rich", "Charlie5", "ERVL-E-int", "L1M5", "L1MA8", "L1MA9", "L1MB5", "L1P1", "L1PA6", "L2a", "L2c", "LTR12F", "LTR16C", "MamRep1527", "MER45A", "MER58A", "MIR", "MIR3", "MIR3a", "MIRb", "MIRc", "MLT1A", "MLT1E1A", "MLT1E1A-int", "MLT1J2", "(TAAA)n", "TAR1", "(TC)n", "XXXXX"), class = "factor"), ValidMerge = c(FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE)), .Names = c("Chromosome", "Start", "End", "(Left)", "Strand", "repName", "ValidMerge"), row.names = c(NA, 20L), class = "data.frame")

And the output after merger

dput(RMDB.out.cut)

structure(list(Chromosome = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L), .Label = "chr1", class = "factor"), Start = c("10469", "20001", "21000", "22000", "22201", "23000", "23201", "20000", "20001", "24001", "0", "30855", "30953", "31293", "31436", "31734"), End = c("11447", "20400", "21400", "22200", "22400", "23200", "23400", "20001", "20200", "24600", "0", "30952", "31131", "31435", "31733", "31754"), (Left) = structure(c(38L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 36L, 35L, 34L, 33L, 32L, 31L), .Label = c("(249203529)", "(249203899)", "(249204128)", "(249204381)", "(249204423)", "(249204634)", "(249204868)", "(249205745)", "(249205786)", "(249208117)", "(249208336)", "(249209743)", "(249209892)", "(249209995)", "(249210327)", "(249210697)", "(249210998)", "(249211157)", "(249212430)", "(249212760)", "(249213190)", "(249215122)", "(249215255)", "(249215700)", "(249216061)", "(249216513)", "(249216580)", "(249217112)", "(249217165)", "(249217584)", "(249218867)", "(249218888)", "(249219186)", "(249219490)", "(249219669)", "(249219773)", "(249235266)", "(249239174)" ), class = "factor"), Strand = structure(c(2L, 1L, 2L, 2L, 2L, 2L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L), .Label = c("+", "C"), class = "factor"), repName = structure(c(32L, 23L, 23L, 23L, 24L, 23L, 23L, 23L, 23L, 23L, 34L, 33L, 27L, 26L, 1L, 26L), .Label = c("AluJo", "AluJr", "AluSx", "AluSz6", "AluYc", "AT_rich", "Charlie5", "ERVL-E-int", "L1M5", "L1MA8", "L1MA9", "L1MB5", "L1P1", "L1PA6", "L2a", "L2c", "LTR12F", "LTR16C", "MamRep1527", "MER45A", "MER58A", "MIR", "MIR3", "MIR3a", "MIRb", "MIRc", "MLT1A", "MLT1E1A", "MLT1E1A-int", "MLT1J2", "(TAAA)n", "TAR1", "(TC)n", "XXXXX"), class = "factor"), ValidMerge = c(FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, FALSE, FALSE, FALSE )), .Names = c("Chromosome", "Start", "End", "(Left)", "Strand", "repName", "ValidMerge"), row.names = c("2", "3", "4", "6", "7", "8", "9", "10", "11", "111", "15", "16", "17", "18", "19", "20" ), class = "data.frame")

4
Please post the code you use at the moment. Otherwise we have to reinvent all of it.Andrie
Are the data already sorted by name, strand and start? Should they not be if they are not?BenBarnes
Looks like an interesting poser! Assuming everything is ordered correctly (as BenBarnes notes), can we establish that the right idea is basically to extend a "chain" of merges as far as it can go, and then perform them all? So if we find i and i+1 can be merged, we look to see if i+2 can be merged as well, and if yes, we continue on until the chain ends? Does this make biological sense in terms of your problem domain?Tim P
@BenBarnes not necessary for the data to be sorted. Look at my solutionSubs
For what it's worth the Bioconductor package GenomicRanges makes this and many other operations on ranges trivial (and fast); see ?GRanges and, e.g., ?reduce, and the vignettes in this and the IRanges package (available from the web landing pages).Martin Morgan

4 Answers

1
votes

I think the strategy should be to generate another column called DoMerge - and for each row R_i (where i ranges 1 to n-1), DoMerge is TRUE if Name and Strand match between R_i and R_{i+1}, and End for R_i is sufficiently close to Start for R_{i+1} (within 100, if that's the right value). DoMerge for row n is FALSE by convention. Intuitively, DoMerge being TRUE means that it is valid to merge that row with the following row.

Then, we merge together all rows where there is a consecutive string of TRUEs. I can knock up some quick code for that if we agree that's the best strategy! :)

UPDATE:

Here's code for the task, assuming that mydf is the data frame of information with columns Name, Strand, Start and End... the output of the below is the start and end points over which you need to merge - though once you know what needs merging it should be a cinch :)

distanceThresh = 100
isSameName=(mydf$Name==c(mydf$Name[-1],"void"))
isSameStrand=(mydf$Strand==c(mydf$Strand[-1],"void"))
isWithinDistance=(c(mydf$Start[-1],max(mydf$End)+2*distanceThresh)
                  -mydf$End) <= distanceThresh
validMerge = isSameName & isSameStrand & isWithinDistance

fthent=which(!validMerge & c(validMerge[-1],FALSE))
tthenf=which(validMerge & !c(validMerge[-1],TRUE))
startpt = fthent+1; if (validMerge[1]) {startpt=c(1,startpt)}
endpt = tthenf+1

instructions=NULL
for (kk in seq_along(startpt)) {
instructions = c(instructions,
               paste("Merge",startpt[kk],"to",endpt[kk],"inclusive",sep=" "))
}

Let me know if this all makes sense! :)

MERGING METHOD (8 June):

How about something like this (has had some testing, but not on the real data)...

doMerge = unlist(mapply(function(x,y) {seq(x,y,1)},startpt,endpt))
doNotMerge = setdiff(seq_along(validMerge),doMerge)
dataMerged=data.frame(Name=RMDB$Name[startpt], Strand=RMDB$Strand[startpt],
                      Start=RMDB$Start[startpt], End=RMDB$End[endpt],
                      stringsAsFactors=FALSE)
dataUnmerged=RMDB[doNotMerge,]

Basically doMerge tells you the lines that require merging (just set up a sequence running from each startpt to the corresponding endpt). And doNotMerge is all the other lines (assuming the length of validMerge is the length of the data).

Then dataMerged just constructs directly what the merged data should look like - obviously Name, Strand and Start are inherited from row startpt and End is inherited from row endpt. (If there are other columns of interest, you'll have to decide where they come from, obviously...) The number of rows in dataMerged matches the length of startpt and endpt, of course. Finally, dataUnmerged is all rows that were ineligible for merging.

Hopefully the above all makes sense, and it's clear that if you combine dataMerged and dataUnmerged and reorder to get everything back in the original sequence (presumably there's an index column that can be used for this), then you have the desired outcome.

And I expect the above will run very, very fast indeed :)

1
votes

Here's the GenomicRanges solution. The first step, one-time only, is to install the package and its dependencies

source("http://bioconductor.org/biocLite.R")
biocLite("GenomicRanges")

Then load the package and create a GRanges instance from your data, which I've put in a data frame called df

library(GenomicRanges)
gr = with(df, GRanges(Chromosome, IRanges(Start, End), Strand, repName=repName))

Your data is actually a little more complicated, a 'list of GRanges', where each list element is defined by a gene, so

grl = split(gr, values(gr)$repName)

You'd like to reduce this on an element-by-element basis, allowing for a reduction when the minimum gap width between adjacent elements is 100. So

merged = reduce(grl, min.gapwidth=100L)

You could coerce this back to a data.frame with as(merged, "data.frame"). The result prior to coercion looks like

> merged
GRangesList of length 8:
$AluJo
GRanges with 1 range and 0 elementMetadata cols:
      seqnames         ranges strand
         <Rle>      <IRanges>  <Rle>
  [1]     chr1 [31436, 31733]      +

$MIR3
GRanges with 7 ranges and 0 elementMetadata cols:
      seqnames         ranges strand
  [1]     chr1 [20001, 20400]      +
  [2]     chr1 [23201, 23400]      +
  [3]     chr1 [24001, 24600]      +
  [4]     chr1 [20000, 20001]      -
  [5]     chr1 [21000, 21400]      -
  [6]     chr1 [22000, 22200]      -
  [7]     chr1 [23000, 23200]      -

and as a data.frame

> as(merged, "data.frame")
   element seqnames start   end width strand
1    AluJo     chr1 31436 31733   298      +
2     MIR3     chr1 20001 20400   400      +
3     MIR3     chr1 23201 23400   200      +
4     MIR3     chr1 24001 24600   600      +
5     MIR3     chr1 20000 20001     2      -
6     MIR3     chr1 21000 21400   401      -
7     MIR3     chr1 22000 22200   201      -
8     MIR3     chr1 23000 23200   201      -

For a million rows, arranged into 100000 genes, we have

> length(grl)
[1] 100000
> table(elementLengths(grl))
    10
100000
> system.time(reduce(grl, min.gapwidth=100))
   user  system elapsed
  9.468   0.064   9.553
0
votes

I would first re-vectorize the different columns from the data-frame (df). Do the necessary operations as below and then put them inside a data-frame

name_strand=paste(df$Name,df$Strand,sep=",")  #for grouping
st=df$Start
en=df$End
unq=unique(name_strand) #get the unique Name+Strand tags
ls1=list()
for(i in 1:length(unq)){
  index=which(name_strand %in% unq[i]) #get the index ids or group by unique Name+Strand 
  un_ls=unlist(strsplit(unq[i],split=","))
  ls1[[i]]=list(Name=un_ls[1],Strand=un_ls[2],Start=min(st[index]),End=max(en[index]))
}
df=as.data.frame(do.call(rbind, ls1))

So this would also solve the situation when you have the Name and Strand occurring elsewhere in the data-frame.

EDIT:

Since there are doubts in your question, I have a modified solution in case you want gap_distance <100 and also taking into consideration that the data-frame rows may not be ordered. So my solution takes both these into consideration (you can modify it if the rows are already ordered in the descending order of Start and End:

for(i in 1:length(unq)){
  index=which(name_strand %in% unq[i]) #get the index ids or group by unique Name+Strand 
  un_ls=unlist(strsplit(unq[i],split=","))
  #previous sol: ls1[[i]]=list(Name=un_ls[1],Strand=un_ls[2],Start=min(st[index]),End=max(en[index]))

  new_st=st[index] #new Start vector from the "st" vector for this group by name_strand
  new_en=en[index]
  new_st=new_st[order(new_st)] #when data-frame rows are not ordered:
  new_en=new_en[order(new_en)]  #"order" method gives the index in ascending order of START

  #using embed method to lag and taking the diff for checking with gap distance considerations
  gap_diff=embed(new_st,2)[,1]-new_en[-length(new_en)]  #subtract from End vector except the last element of End  
  a_ind_st=1 #index of new_st (Start) vector
  b_ind_en=1 #index of new_en (End) vector     
  ls_ind=1  #index for list
  for (j in 1:(length(new_en)-1)){  #also acts as the index for gap_diff
      if (gap_diff[j] < gap_distance){ #where gap_distance = 100 (consideration #2) < or <=
          b_ind_en=j+1
           if (j + 1 > length(new_en)-1){  #special case for last element in vector
              ls1[[ls_ind]]=list(Name=un_ls[1],Strand=un_ls[2],Start=new_st[a_ind_st],End=new_en[b_ind_en]))
              ls_ind=ls_ind+1 #increment list index
           }
       }else{
          ls1[[ls_ind]]=list(Name=un_ls[1],Strand=un_ls[2],Start=new_st[a_ind_st],End=new_en[b_ind_en]))
          ls_ind=ls_ind+1 #increment list index
          a_ind_st=b_ind_en+1
          b_ind_en=b_ind_en+1
      }      
   }
}
df=as.data.frame(do.call(rbind, ls1))

This modification will take everything into consideration. If you don't require any restrictions, you can modify the solution.

0
votes

It's also possible to do this using dplyr, which may be more readily understood by others and still uses no loops.

  1. Divide the rows into groups with the same Name and Strand using group_by
  2. Determine which rows within each potential group are within the minimum gap range using mutate
  3. Then "merge" the adjacent rows using group_by and summarize

There must be a typo in the dput output because I couldn't get it to work so I used the smaller example data set instead.

library(dplyr)

X <- tibble(
    id = c("R1", "R2", "R3", "R4"),
    Name = c("GeneA", "GeneA", "GeneA", "GeneB"),
    Strand = c("+", "+", "+", "-"),
    Start = c(1000, 1510, 2001, 3100),
    End = c(1500, 2000, 2500, 4000)
)
print(X)

Example data from post

# A tibble: 4 x 5
  id    Name  Strand Start   End
  <chr> <chr> <chr>  <dbl> <dbl>
1 R1    GeneA +       1000  1500
2 R2    GeneA +       1510  2000
3 R3    GeneA +       2001  2500
4 R4    GeneB -       3100  4000

dplyr solution:

# Set max distance between strands
max_gap <- 100

X %>%

    # consider row groups with the same Name and Strand
    group_by(Name, Strand) %>%

    # logically identify rows that meet the closeness criteria 
    mutate(group_id = (!is.na(lag(End)) & (lag(End) - Start) < max_gap)) %>%
    

    # Sum over the logical identifier to create a group identifier on every row
    ungroup() %>%
    mutate(group_id = cumsum(!group_id)) %>%

    # Merge rows that are in the same group
    group_by(group_id, Name, Strand) %>%
    summarize(id = min(id), Start = min(Start), End = max(End)) %>%
    ungroup() %>%

    # Keep only the desired columns
    select(id, Name, Strand, Start, End)

Result

# A tibble: 2 x 5
  id    Name  Strand Start   End
  <chr> <chr> <chr>  <dbl> <dbl>
1 R1    GeneA +       1000  2500
2 R4    GeneB -       3100  4000