Now iterate over our dataset n_epoch times for iteration in range(epoch): print("Iteration no: {} ".format(iteration))
previous_batch=0
# Do our mini batches:
for i in range(no_itr_per_epoch):
current_batch=previous_batch+batch_size
x_input=X_train[previous_batch:current_batch]
x_images=np.reshape(x_input,[batch_size,50,50,3])
y_input=Y_train[previous_batch:current_batch]
y_label=np.reshape(y_input,[batch_size,2])
previous_batch=previous_batch+batch_size
_,loss=sess.run([train_step, cross_entropy], feed_dict={x: x_images,y_: y_label})
if i % 100==0 :
print ("Training loss : {}" .format(loss))
x_test_images=np.reshape(X_test[0:n_test],[n_test,50,50,3])
y_test_labels=np.reshape(Y_test[0:n_test],[n_test,2])
Accuracy_test=sess.run(accuracy,
feed_dict={
x: x_test_images ,
y_: y_test_labels
})
Accuracy_test=round(Accuracy_test*100,2)
x_val_images=np.reshape(X_val[0:n_val],[n_val,50,50,3])
y_val_labels=np.reshape(Y_val[0:n_val],[n_val,2])
Accuracy_val=sess.run(accuracy,
feed_dict={
x: x_val_images ,
y_: y_val_labels
})
Accuracy_val=round(Accuracy_val*100,2)
print("Accuracy :: Test_set {} % , Validation_set {} % " .format(Accuracy_test,Accuracy_val))
ValueError: cannot reshape array of size 20000 into shape (8,50,50,3)
def process_img(img):