I have created a video dataset where each video have dimensions 5(frames) x 32(width) x 32(height) x 4 (channels). I'm trying to classify (binary classification) these videos using a CNN LSTM network but I'm confused about the input shape and how I should reshape my dataset to train the network.
model = Sequential()
model.add(TimeDistributed(Conv2D(64, 5, activation='relu', padding='same', name='conv1', input_shape=??))
model.add(TimeDistributed(MaxPooling2D(pool_size=(2,2), strides=(2,2), padding='same', name='pool1')))
model.add(TimeDistributed(Conv2D(64, 5, activation='relu', padding='same', name='conv2'))
model.add(TimeDistributed(MaxPooling2D(pool_size=(2,2), strides=(2,2), padding='same', name='pool2')))
model.add(TimeDistributed(Conv2D(64, 5, activation='relu', padding='same', name='conv3'))
model.add(TimeDistributed(MaxPooling2D(pool_size=(2,2), strides=(2,2), padding='same', name='pool3')))
model.add(TimeDistributed(Conv2D(64, 5, activation='relu', padding='same', name='conv4'))
model.add(TimeDistributed(MaxPooling2D(pool_size=(2,2), strides=(2,2), padding='same', name='pool4')))
model.add(TimeDistributed(Flatten()))
model.add(LSTM(256, return_sequences=False, dropout=0.5))
model.add(Dense(1, activation='sigmoid'))
Am I missing anything in the model?