I'm working on a discrete choice experiment with the following characteristics: 3 alternatives which includes 1 opt-out. Each of the 2 alternatives has 3 attributes, with each attribute having 3 factor levels. Each respondent has 6 choice tasks to complete. All 3 parameters (alternatives) have been effects type coded.
I would like to create a random parameter error components model with no buy / opt-out as the intercept. However, this gives a singularity error when using the "mlogit" package. Can anyone give advice on how to deal with this?
Random parameter model creation:
rpm1 <- mlogit(choice ~ 0 + Prot + Carb + Price, data=ce,
rpar = c(Prot = "n", Carb = "n", Price = "n"), panel = TRUE,
correlation = TRUE, R = 10, Halton = TRUE)
Example of data (in long format):
id ques choice alti Prot Carb Price NoBuy
1 26 1 FALSE 1 Meat B 20 0
2 26 1 FALSE 2 Veg A 20 0
3 26 1 TRUE 3 NoBurger 0 0 1
4 26 2 FALSE 1 Meat C 10 0
5 26 2 FALSE 2 Poultry A 10 0
6 26 2 TRUE 3 NoBurger 0 0 1
7 26 3 FALSE 1 Poultry C 5 0
8 26 3 TRUE 2 Meat B 20 0
9 26 3 FALSE 3 NoBurger 0 0 1
10 26 4 FALSE 1 Poultry A 20 0
11 26 4 FALSE 2 Veg B 5 0
12 26 4 TRUE 3 NoBurger 0 0 1
13 26 5 FALSE 1 Veg B 10 0
14 26 5 FALSE 2 Meat C 10 0
15 26 5 TRUE 3 NoBurger 0 0 1
16 26 6 FALSE 1 Veg A 5 0
17 26 6 FALSE 2 Poultry B 5 0
18 26 6 TRUE 3 NoBurger 0 0 1
19 30 1 TRUE 1 Meat B 20 0
20 30 1 FALSE 2 Veg A 20 0