1
votes

In torch.distributed, how to average gradients on different GPUs correctly?

Modified from https://github.com/seba-1511/dist_tuto.pth/blob/gh-pages/train_dist.py, the codes below can successfully make use of both GPUs (can be checked with nvidia-smi).

But one thing difficult to understand is whether the 'average_gradients' below is indeed the correct way of averaging gradients on the two models on the two GPUs. Like the codes below, the two 'model = Net()' run with two processes are two models on two different GPUs, but and the line 'average_gradients(model)' just 'averages' gradients of the model on one GPU, not two models on the two GPUs.

The question is that is the codes below indeed a correct way for averaging gradients on the two GPU? If true, how to read, how to understand the codes? If not, what is the correct way of averaging gradients on the two models below?

import os
import torch
import torch.distributed as dist
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim

from math import ceil
from random import Random
from torch.multiprocessing import Process
from torchvision import datasets, transforms
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1"

class Partition(object):
    """ Dataset-like object, but only access a subset of it. """

    def __init__(self, data, index):
        self.data = data
        self.index = index
    def __len__(self):
        return len(self.index)

    def __getitem__(self, index):
        data_idx = self.index[index]
        return self.data[data_idx]

class DataPartitioner(object):
    """ Partitions a dataset into different chuncks. """
    def __init__(self, data, sizes=[0.7, 0.2, 0.1], seed=1234):
        self.data = data
        self.partitions = []
        rng = Random()
        rng.seed(seed)
        data_len = len(data)
        indexes = [x for x in range(0, data_len)]
        rng.shuffle(indexes)
        for frac in sizes:
            part_len = int(frac * data_len)
            self.partitions.append(indexes[0:part_len])
            indexes = indexes[part_len:]

    def use(self, partition):
        return Partition(self.data, self.partitions[partition])


class Net(nn.Module):
    """ Network architecture. """

    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
        self.conv2_drop = nn.Dropout2d()
        self.fc1 = nn.Linear(320, 50)
        self.fc2 = nn.Linear(50, 10)

    def forward(self, x):
        x = F.relu(F.max_pool2d(self.conv1(x), 2))
        x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
        x = x.view(-1, 320)
        x = F.relu(self.fc1(x))
        x = F.dropout(x, training=self.training)
        x = self.fc2(x)
        return F.log_softmax(x)


def partition_dataset():
    """ Partitioning MNIST """
    dataset = datasets.MNIST(
        './data',
        train=True,
        download=True,
        transform=transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize((0.1307, ), (0.3081, ))
        ]))
    size = dist.get_world_size()
    bsz = int(256 / float(size))
    partition_sizes = [1.0 / size for _ in range(size)]
    partition = DataPartitioner(dataset, partition_sizes)
    partition = partition.use(dist.get_rank())
    train_set = torch.utils.data.DataLoader(
        partition, batch_size=bsz, shuffle=True)
    return train_set, bsz


def average_gradients(model):
    """ Gradient averaging. """
    size = float(dist.get_world_size())
    for param in model.parameters():
        dist.all_reduce(param.grad.data, op=dist.reduce_op.SUM)
        param.grad.data /= size


def run(rank, size):
    """ Distributed Synchronous SGD Example """
    # print("107 size = ", size)
    # print("dist.get_world_size() = ", dist.get_world_size()) ## 2

    torch.manual_seed(1234)
    train_set, bsz = partition_dataset()
    device = torch.device("cuda:{}".format(rank))

    model = Net()
    model = model.to(device)
    optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)

    num_batches = ceil(len(train_set.dataset) / float(bsz))
    for epoch in range(10):
        epoch_loss = 0.0
        for data, target in train_set:
            # data, target = Variable(data), Variable(target)
           # data, target = Variable(data.cuda(rank)), Variable(target.cuda(rank))
            data, target = data.to(device), target.to(device)

            optimizer.zero_grad()
            output = model(data)
            loss = F.nll_loss(output, target)
            epoch_loss += loss.item()
            loss.backward()
            average_gradients(model)
            optimizer.step()
        print('Rank ',
              dist.get_rank(), ', epoch ', epoch, ': ',
              epoch_loss / num_batches)
        # if epoch == 4:
            # from utils import module_utils
            # module_utils.save_model()

def init_processes(rank, size, fn, backend='gloo'):
    """ Initialize the distributed environment. """
    os.environ['MASTER_ADDR'] = '127.0.0.1'
    os.environ['MASTER_PORT'] = '29500'
    dist.init_process_group(backend, rank=rank, world_size=size)
    fn(rank, size)


if __name__ == "__main__":
    size = 2
    processes = []
    for rank in range(size):
        p = Process(target=init_processes, args=(rank, size, run))
        p.start()
        processes.append(p)

    for p in processes:
        p.join()

2
Did you figure it out finally?pooria
My solution is to use DistributedDataParallel instead of DataParallel like below. After some survey it's also found that DataParallel is much worse performing compared to DistributedDataParallel, so DataParallel examples can be ignored.Tom

2 Answers

0
votes

My solution is to use DistributedDataParallel instead of DataParallel like below.

The code

for param in self.model.parameters():
    torch.distributed.all_reduce(param.grad.data)

can work successfully.

class DDPOptimizer:
    def __init__(self, model, torch_optim=None, learning_rate=None):
        """
        :param parameters:
        :param torch_optim: like torch.optim.Adam(parameters, lr=learning_rate, eps=1e-9)
            or optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
        :param is_ddp:
        """
        if torch_optim is None:
            torch_optim = torch.optim.Adam(model.parameters(), lr=3e-4, eps=1e-9)

        if learning_rate is not None:
            torch_optim.defaults["lr"] = learning_rate

        self.model = model
        self.optimizer = torch_optim

    def optimize(self, loss):
        self.optimizer.zero_grad()
        loss.backward()
        for param in self.model.parameters():
            torch.distributed.all_reduce(param.grad.data)

        self.optimizer.step()
    pass

def run():
    """ Distributed Synchronous SGD Example """

    module_utils.initialize_torch_distributed()
    start = time.time()

    train_set, bsz = partition_dataset()
    model = Net()

    local_rank = torch.distributed.get_rank()
    device = torch.device("cuda", local_rank)
    model = model.to(device)

    sgd = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
    optimizer = DDPOptimizer(model, torch_optim=sgd)

    # optimizer = NoamOptimizerDistributed(100, 1, 10, model)

    num_batches = math.ceil(len(train_set.dataset) / float(bsz))

    epoch, end_epoch = 1, 10

    while epoch <= end_epoch:
        epoch_loss = 0.0
        for data, target in train_set:
            data, target = data.to(device), target.to(device)

            output = model(data)
            loss = F.nll_loss(output, target)
            epoch_loss += loss.item()
            optimizer.optimize(loss)

        print('Rank ', dist.get_rank(), ', epoch ', epoch, ': ', epoch_loss / num_batches)
        # if epoch % 6 == 0:
        #     if local_rank == 0:
        #         module_utils.save_model(model, "a.pt")
        epoch += 1

    print("Time take to train: ", time.time() - start)
-1
votes

Run DPP on a single machine. And regarding validation, I don't handle it very well and just check validation results.