I take my statement back. sum is not the winner. Although it is faster when the list is small. But the performance degrades significantly with larger lists. 
>>> timeit.Timer(
        '[item for sublist in l for item in sublist]',
        'l=[[1, 2, 3], [4, 5, 6, 7, 8], [1, 2, 3, 4, 5, 6, 7]] * 10000'
    ).timeit(100)
2.0440959930419922
The sum version is still running for more than a minute and it hasn't done processing yet!
For medium lists:
>>> timeit.Timer(
        '[item for sublist in l for item in sublist]',
        'l=[[1, 2, 3], [4, 5, 6, 7, 8], [1, 2, 3, 4, 5, 6, 7]] * 10'
    ).timeit()
20.126545906066895
>>> timeit.Timer(
        'reduce(lambda x,y: x+y,l)',
        'l=[[1, 2, 3], [4, 5, 6, 7, 8], [1, 2, 3, 4, 5, 6, 7]] * 10'
    ).timeit()
22.242258071899414
>>> timeit.Timer(
        'sum(l, [])',
        'l=[[1, 2, 3], [4, 5, 6, 7, 8], [1, 2, 3, 4, 5, 6, 7]] * 10'
    ).timeit()
16.449732065200806
Using small lists and timeit: number=1000000
>>> timeit.Timer(
        '[item for sublist in l for item in sublist]',
        'l=[[1, 2, 3], [4, 5, 6, 7, 8], [1, 2, 3, 4, 5, 6, 7]]'
    ).timeit()
2.4598159790039062
>>> timeit.Timer(
        'reduce(lambda x,y: x+y,l)',
        'l=[[1, 2, 3], [4, 5, 6, 7, 8], [1, 2, 3, 4, 5, 6, 7]]'
    ).timeit()
1.5289170742034912
>>> timeit.Timer(
        'sum(l, [])',
        'l=[[1, 2, 3], [4, 5, 6, 7, 8], [1, 2, 3, 4, 5, 6, 7]]'
    ).timeit()
1.0598428249359131
 
				
[7]in your list (instead of7) indicates that yes, it is a perfectly two-level list. So wouldn't sthg very simple likel2=[]followed by[l2.extend(i) for i in l]do the trick? - gnoodle