Currently, I am using a for loop to read csv files from a folder. After reading the csv file, I am storing the data into one row of a dictionary. When I print the data types using "print(list_of_dfs.dtypes)" I receive:
dtype: object DATETIME : object VALUE : float64 ID : int64 ID Name: object.
Note that this is a nested dictionary with thousands of values stored in each of these data fields. I have 26 rows of the structure listed above. I am trying to append the dictionary rows into a dataframe where I will have only 1 row consisting of the datafields:
Index DATETIME VALUE ID ID Name.
Note: I am learning python as I go. I tried using an array to store the data and then convert the array to a dataframe but I could not append the rows of the dataframe.
Using the dictionary method I attempted "df = pd.Dataframe(list_of_dfs)" This throws an error.
list_of_dfs = {}
for I in range(0,len(regionLoadArray)
list_of_dfs[I] = pd.read_csv(regionLoadArray[I])
#regionLoadArray contains my- file names from list directory.
dataframe = pd.DataFrame(list_of_dfs)
#this method was suggested at thispoint.com for nested dictionaries.
#This is where my error occurs^
ValueError: If using all scalar values, you must pass an index
I appreciate any assistance with this issue as I am new to python. My current goals is to simply produce a dataframe with my Headers that I can then send to a csv.