Here is a summary of the valid solutions provided by all users, for data frames indexed by integer and string.
df.iloc, df.loc and df.at work for both type of data frames, df.iloc only works with row/column integer indices, df.loc and df.at supports for setting values using column names and / or integer indices.
When the specified index does not exist, both df.loc and df.at would append the newly inserted rows/columns to the existing data frame, but df.iloc would raise "IndexError: positional indexers are out-of-bounds". A working example tested in Python 2.7 and 3.7 is as follows:
import numpy as np, pandas as pd
df1 = pd.DataFrame(index=np.arange(3), columns=['x','y','z'])
df1['x'] = ['A','B','C']
df1.at[2,'y'] = 400
# rows/columns specified does not exist, appends new rows/columns to existing data frame
df1.at['D','w'] = 9000
df1.loc['E','q'] = 499
# using df[<some_column_name>] == <condition> to retrieve target rows
df1.at[df1['x']=='B', 'y'] = 10000
df1.loc[df1['x']=='B', ['z','w']] = 10000
# using a list of index to setup values
df1.iloc[[1,2,4], 2] = 9999
df1.loc[[0,'D','E'],'w'] = 7500
df1.at[[0,2,"D"],'x'] = 10
df1.at[:, ['y', 'w']] = 8000
df1
>>> df1
x y z w q
0 10 8000 NaN 8000 NaN
1 B 8000 9999 8000 NaN
2 10 8000 9999 8000 NaN
D 10 8000 NaN 8000 NaN
E NaN 8000 9999 8000 499.0
df['x']['C']
), usedf.ix['x','C']
. – Yarivdataframe[column (series)] [row (Series index)]
, whereas many people (including myself) are more used to thedataframe[row][column]
order. As a Matlab and R programmer the latter feels more intuitive to me but that apparently is not the way Pandas works.. – Zhubarb