1
votes

I am working on a neural network for regression based off of this question

My code looks like this:

import numpy as np
from keras.layers import Dense, Activation
from keras.models import Sequential
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
import pandas as pd


# Importing the dataset
data = pd.read_csv('binned.csv')

# create the labels, or field we are trying to estimate
label = data['TOTAL_DAYS_TO_COMPLETE']

# create the data, or the data that is to be estimated
data = data.drop('TOTAL_DAYS_TO_COMPLETE', axis=1)
data = data.drop('SERIALNUM', axis=1)

print(data)

# # split into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(data, label, test_size = 0.2)

# Feature Scaling
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)

# Initialising the ANN
model = Sequential()

# Adding the input layer and the first hidden layer
model.add(Dense(32, activation = 'relu', input_dim = 6))

# Adding the second hidden layer
model.add(Dense(units = 32, activation = 'relu'))

# Adding the third hidden layer
model.add(Dense(units = 32, activation = 'relu'))

# Adding the output layer
model.add(Dense(units = 1))

#model.add(Dense(1))
# Compiling the ANN
model.compile(optimizer = 'adam', loss = 'mean_squared_error')

# Fitting the ANN to the Training set
model.fit(X_train, y_train, batch_size = 10, epochs = 100)

y_pred = model.predict(X_test)

plt.plot(y_test, color = 'red', label = 'Real data')
plt.plot(y_pred, color = 'blue', label = 'Predicted data')
plt.title('Prediction')
plt.legend()
plt.show()

When running it, I get an error:

Traceback (most recent call last): File "ann.py", line 50, in model.fit(X_train[0:1], y_train, batch_size = 10, epochs = 100) File "C:\Python367-64\lib\site-packages\keras\engine\training.py", line 952, in fit batch_size=batch_size) File "C:\Python367-64\lib\site-packages\keras\engine\training.py", line 751, in _standardize_user_data exception_prefix='input') File "C:\Python367-64\lib\site-packages\keras\engine\training_utils.py", line 138, in standardize_input_data str(data_shape)) ValueError: Error when checking input: expected dense_1_input to have shape (6,) but got array with shape (24,)

I have used the same

# Importing the dataset
data = pd.read_csv('binned.csv')

# create the labels, or field we are trying to estimate
label = data['TOTAL_DAYS_TO_COMPLETE']

# create the data, or the data that is to be estimated
data = data.drop('TOTAL_DAYS_TO_COMPLETE', axis=1)
data = data.drop('SERIALNUM', axis=1)

print(data)

# # split into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(data, label, test_size = 0.2)

across various sklearn libraries and it runs just fine.

What am I doing wrong?

My print(data) looks like: (I manually deleted column headings for intellectual property concerns with my construction company)

0                 7                 2       3       2          2               1  ...       8       2        2        2        5         1
1                 1                 3       1       1          1               1  ...       2       1        1        1        1         1
2                 2                 2       3       1          1               1  ...       6       1        1        5        1         2
3                 7                 5       1       1          1               1  ...       1       1        1        1        1         1
4                 5                 6       1       1          1               1  ...       2       1        1        1        2         1
5                 5                 4       1       3          1               1  ...       8       4        3        2        7         3
6                 4                 6       3       7          5               1  ...       7       2        2        6        7         2
7                 9                10       4       1          3               1  ...       4       1        1        1        8         2
8                 4                 2       2       1          1               1  ...       2       1        1        1        1         1
9                 1                 2       1       5          2               3  ...       2       4        3        6        3         3
10                7                 9       1       3          2               1  ...       7       1        1        5        8         1
11                8                 6       1       1          1               1  ...       1       1        1        1        1         1
12                8                 8       2       1          1               2  ...       9       3        5        2        3         1
13                2                 3       1       1          1               1  ...       2       2        2        2        1         1
14                2                 2       2       1          1               2  ...       2       2        2        1        3         1
15                5                 1       2       1          1               2  ...       2       1        1        1        1         2
16                1                 2       5       8          7               3  ...       2       4        3        7        7         5
17                6                 4       1       3          1               3  ...       9       3        3        1        5         5
18               10                 1       1       2          1               2  ...       1       1        1        5        1         3
19                3                 3       2       3          2               1  ...       2       1        1        1        1         1
20                6                 2       2       7          3               4  ...       7       5        4        3        5         5
21                1                 2       1       3          1               2  ...       2       1        1        5        1         2
22               10                 4       2       3          2               1  ...       1       2        2        6        3         2
23                3                 4       1       1          1               1  ...       1       2        2        1        5         1
24                4                 4       4       2          2               1  ...       1       1        1        1        5         1
25                9                 8       2       2          2               1  ...       2       1        1        1        7         1
26                1                 1       3       3          2               1  ...       2       1        1        5        1         1
27                6                 4       3       3          2               3  ...       5       2        2        1        3         2
28                4                 7       3       7          5               1  ...       5       3        6        2        5         5
29                5                 1       1       2          1               1  ...       1       2        1        2        3         3
..              ...               ...     ...     ...        ...             ...  ...     ...     ...      ...      ...      ...       ...
285               3                 3       9       8          9              10  ...      10      10        6        8        3         5
286               4                 6       4       7          5               7  ...       7       7        8        3        3         5
287               5                 6       5       9          8               9  ...       4       9        9        5        5         5
288               5                 5       9       7          9               9  ...       4       8        8        7        5         5
289               4                 6       9       9         10              10  ...      10      10        9        8        5         5
290              10                 9       6       5          7               8  ...       2       7        6        7        3         5
291               4                 9       9       2          7               5  ...       7       3        8        9        8         5
292               7                 9       8       8          9               8  ...      10       9       10       10        8         5
293               9                10       6       9          9              10  ...       8      10       10       10        8         5
294               5                 9       8       9         10               9  ...       6      10       10       10        8         5
295               5                10       8       8          9               9  ...      10       5        9        9        8         5
296               6                 9       8       8          9               9  ...       6       8       10        9        8         5
297               1                10       8       9         10               9  ...       4      10       10        9        8         2
298               2                10       8       7          9               9  ...       4       8       10        9        8         1
299               8                 9       9       9         10              10  ...      10      10       10       10        8         3
300               9                10       9       9         10               9  ...       8      10       10       10        8         3
301               7                10       8       7          9               8  ...       8       8        9        9        8         3
302              10                10       8      10         10              10  ...       4       9       10        9        8         3
303               6                 9      10       9         10              10  ...      10      10       10       10        5        10
304               9                10       9      10         10              10  ...       6      10        9       10        8         5
305               7                 9      10       9         10              10  ...       9      10       10       10        8         5
306               9                 9       9       8         10              10  ...      10      10       10        9        8         5
307               7                 9      10       8         10              10  ...      10       8       10       10        8         5
308               9                 8       6       9          9              10  ...       7       9        9        4        8         5
309               9                 9       9      10         10              10  ...      10      10       10       10        8         5
310               1                 9       8      10         10              10  ...       8      10       10        9        8         5
311               9                10      10      10         10              10  ...      10      10       10       10        8        10
312               7                10       9       9         10              10  ...       7      10       10        9        8         5
313               2                 5       8      10         10              10  ...       4      10       10        9        8         5
314               7                 9       9      10         10               9  ...       7      10       10        9        8         5

I do not understand what that error is saying, or how to fix it.

1

1 Answers

3
votes

This error:

ValueError: Error when checking input: expected dense_1_input to have shape (6,) but got array with shape (24,)

Can be translated to English as: You told Keras that the input will have 6 dimensions, but the actual input has 24 dimensions. A possible fix is then to change the first line of your model definition to:

model.add(Dense(32, activation = 'relu', input_dim = 24))