I am exploring the tidyverse package. So I am interested in how to get the following task down in the tidy way. One can easily circumvent the problem using *apply
functions.
Consider the following data
tb <-
lapply(matrix(c("a", "b", "c")), function(x)
rep(x, 3)) %>% unlist %>% c(rep(c(1, 2, 3), 6)) %>% matrix(ncol = 3) %>%
as_tibble(.name_repair = ~ c("tag", "x1", "x2")) %>% type.convert()
# A tibble: 9 x 3
tag x1 x2
<fct> <int> <int>
1 a 1 1
2 a 2 2
3 a 3 3
4 b 1 1
5 b 2 2
6 b 3 3
7 c 1 1
8 c 2 2
9 c 3 3
I group them using nest()
function and for each group I want to apply a different function from a list of functions f_1, f_2, f_3
f_1 <- function(x)
x[,1] + x[,2]
f_2 <- function(x)
x[,1] - x[,2]
f_3 <- function(x)
x[,1] * x[,2]
tb_func_attached <-
tb %>% group_by(tag) %>% nest() %>% mutate(func = c(f_0, f_1, f_2))
# A tibble: 3 x 3
tag data func
<fct> <list> <list>
1 a <tibble [3 x 2]> <fn>
2 b <tibble [3 x 2]> <fn>
3 c <tibble [3 x 2]> <fn>
I try to use invoke_map to apply the functions
tb_func_attached %>% {invoke_map(.$func, .$data)}
invoke_map(tb_func_attached$func, tb_func_attached$data)
But I get the error Error in (function (x) : unused arguments (x1 = 1:3, x2 = 1:3)
, while the following code runs
> tb_func_attached$func[[1]](tb_func_attached$data[[1]])
x1
1 2
2 4
3 6
> tb_func_attached$func[[2]](tb_func_attached$data[[2]])
x1
1 0
2 0
3 0
> tb_func_attached$func[[3]](tb_func_attached$data[[3]])
x1
1 1
2 4
3 9
But invoke_map
still does not work.
So the question is, given a nested data tb_func_attached
, how to apply the functions tb_func_attached$func
'rowwisely' to tb_func_attached$data
?
And a side question, what is the reason for the retirement of invoke_map
? It fits quitely well in the concept of vetorisation, IMHO.
Update:
The previous version dealt with single column data (tb
has only tag and x1
columns) and @A. Suliman's comment provides a solution.
However when the data column in the nested tibble has a matrix structure, the code stops running again.
val
column intox
. – A. Suliman?purrr::invoke_map
;df <- tibble::tibble( f = c("runif", "rpois", "rnorm"), params = list( list(n = 10), list(n = 5, lambda = 10), list(n = 10, mean = -3, sd = 10) ) ) df invoke_map(df$f, df$params)
,params
used the arguments of each function as names inside the list. – A. Sulimandata
as the input argument? – newbie