I'm working on a prolog assignment and I'm currently very very close to the solution. So, the problem is a constraint satisfaction problem where I have to find values for a set of variables such that certain conditions are true. Specifically, given 3 words (W1,W2,W3), assign their variables such that W1+W2=W3. An example of this would be SEND+MORE=MONEY, or IT+IS=ME.
The constraints are: (1) they have to add up correctly, (2) the starting letter cannot be 0 (3) and all variables must be distinct. And it has to work for a general word problem. My issue is happening when I try to ensure that they add up correctly (I've met the other conditions and I understand the problem). In terms of the second word problem we should have:
10*I + 1*T
+10*I + 1*S
___________
10*M + 1*E
So, I have made a function that makes lists of powers of 10 in a certain length, like so:
powlist(1,L) :-
append([1.0],[],L).
powlist(N,L) :-
N1 is N-1,
X is 10**N1,
powlist(N1,L1),
append([X],L1,L),
!.
I also have the actual list of letters, say, [I,T,I,S,M,E]. I then constructed a list of coefficients (I'll explain that part later) out of powlist so we have something like the following: [10,1,10,1,-10,-1]. I did this so if we took the dot product between this list of coefficients and the list of letters, and it was zero, the constraint would be satisfied. But, I can't get this dot product theory to work. I currently have a line that says:
scalar_product(Coefficients, Letters, #=, 0)
But this is giving me the following error:
! Instantiation error in argument 2 of is/2
! goal: _102 is 0+10.0*_109
I'm not sure how to define dot product so it can work on variables (instead of just atoms). All of the rest of the code works perfectly (and I don't want to put it on here because this is a very common question for introductory prolog courses, and I don't want to give lazy people answers). What do you guys suggest?