Kfold commands for accuracy, AUC and recall worked fine but now showing errors.
kernel restarted a number of times and attempted alternative approaches to no avail, such as 'stratifiedkfold', 'in emumerate' and looping.
from sklearn.model_selection import KFold
svc_clf = svm.SVC(C=50,
kernel='rbf',
gamma=0.1,
probability=False,
class_weight={1: 5}
)
svc_clf.fit(X_train_std, y_train)
# K-fold cross-validator
kfold = Kfold(n_splits=10, random_state=140311, shuffle=True)
for train_index, test_index in kfold.split(X):
X_training, X_testing = X_train_std[train_index], X_train_std[test_index]
y_training, y_testing = y_train[train_index], y_train[test_index]
df_kfold_acc = cross_val_score(svc_clf, X_train_std, y_train, cv=kfold, scoring='accuracy')
print'10 fold validation accuracy scores: \n', (df_kfold_acc)
print'Kfold mean accuracy score: \n', (df_kfold_acc).mean()
df_kfold_auc = cross_val_score(svc_clf, X_train_std, y_train, cv=kfold, scoring='roc_auc')
print'\n\n 10 fold validation AUC scores:\n ', (df_kfold_auc)
print'Kfold mean AUC score: \n', (df_kfold_auc).mean()
df_kfold_recall = cross_val_score(svc_clf, X_train_std, y_train, cv=kfold, scoring='recall')
print'\n\n 10 fold validation recall scores:\n', (df_kfold_recall)
print'Kfold mean recall score: \n', (df_kfold_recall).mean()
Expected (and previous got) something like the following:
10 fold validation accuracy scores: {0.7982993, 0.6793838, etc (for 10 folds total)} Kfold mean accuracy score: 0.78679979
Actual error:
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-56-61c6420c7a2f> in <module>()
6 class_weight={1: 5}
7 )
----> 8 svc_clf.fit(X_train_std, y_train)
9
10 # K-fold cross-validator
/Users/db/anaconda2/lib/python2.7/site-packages/sklearn/svm/base.pyc in fit(self, X, y, sample_weight)
147 self._sparse = sparse and not callable(self.kernel)
148
--> 149 X, y = check_X_y(X, y, dtype=np.float64, order='C', accept_sparse='csr')
150 y = self._validate_targets(y)
151
/Users/db/anaconda2/lib/python2.7/site-packages/sklearn/utils/validation.pyc in check_X_y(X, y, accept_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, multi_output, ensure_min_samples, ensure_min_features, y_numeric, warn_on_dtype, estimator)
576 dtype=None)
577 else:
--> 578 y = column_or_1d(y, warn=True)
579 _assert_all_finite(y)
580 if y_numeric and y.dtype.kind == 'O':
/Users/db/anaconda2/lib/python2.7/site-packages/sklearn/utils/validation.pyc in column_or_1d(y, warn)
612 return np.ravel(y)
613
--> 614 raise ValueError("bad input shape {0}".format(shape))
615
616
ValueError: bad input shape (513, 10)