from sklearn.preprocessing import OneHotEncoder
enc=OneHotEncoder(handle_unknown='ignore')
X=[['gender', 1], ['NationalITy', 2], ['PlaceofBirth', 3],['StageID', 4], ['GradeID', 5], ['SectionID', 6],['Topic', 7], ['Semester', 8], ['Relation', 9],['raisedhands', 1], ['VisITedResources', 2], ['AnnouncementsView', 3],['Discussion', 4], ['ParentAnsweringSurvey', 5], ['ParentschoolSatisfaction', 6],['Class',7]]
enc.fit_transform(X)
ValueError Traceback (most recent call last) in () ----> 1 enc.fit_transform(X)
~\Anaconda3\lib\site-packages\sklearn\preprocessing\data.py in fit_transform(self, X, y) 2017 """ 2018 return _transform_selected(X, self._fit_transform, -> 2019 self.categorical_features, copy=True) 2020 2021 def _transform(self, X):
~\Anaconda3\lib\site-packages\sklearn\preprocessing\data.py in _transform_selected(X, transform, selected, copy) 1807 X : array or sparse matrix, shape=(n_samples, n_features_new) 1808
""" -> 1809 X = check_array(X, accept_sparse='csc', copy=copy, dtype=FLOAT_DTYPES) 1810 1811 if isinstance(selected, six.string_types) and selected == "all":~\Anaconda3\lib\site-packages\sklearn\utils\validation.py in check_array(array, accept_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, ensure_min_samples, ensure_min_features, warn_on_dtype, estimator) 431 force_all_finite) 432 else: --> 433 array = np.array(array, dtype=dtype, order=order, copy=copy) 434 435 if ensure_2d:
ValueError: could not convert string to float: 'gender'
scikit-learn-0.20.3
andscipy-1.2.1
– Devesh Kumar Singh