I'm attempting to access the key covariates in detection probability.
I'm currently using this code
model1 <- glm(P ~ Width +
MBL +
DFT +
SGP +
SGC +
Depth,
family = binomial("logit"),
data = dframe2, na.action = na.exclude)
summary.lm(model1)
my data is structured like this-
Site Transect Q ID P Width DFT Depth Substrate SGP SGC MBL
1 Vr1 Q1 1 0 NA NA 0.5 Sand 0 0 0.00000
2 Vr1 Q2 2 0 NA NA 1.4 Sand&Searass 1 30 19.14286
3 Vr1 Q3 3 0 NA NA 1.7 Sand&Searass 1 15 16.00000
4 Vr1 Q4 4 1 17 0 2.0 Sand&Searass 1 95 35.00000
5 Vr1 Q5 5 0 NA NA 2.4 Sand 0 0 0.00000
6 Vr1 Q6 6 0 NA NA 2.9 Sand&Searass 1 50 24.85714
My sample size is really small (n=12) and I only have ~70 rows of data.
when I run the code it returns
Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.457e+01 4.519e+00 5.437 0.00555 **
Width 1.810e-08 1.641e-01 0.000 1.00000
MBL -2.827e-08 9.906e-02 0.000 1.00000
DFT 2.905e-07 1.268e+00 0.000 1.00000
SGP 1.064e-06 2.691e+00 0.000 1.00000
SGC -2.703e-09 3.289e-02 0.000 1.00000
Depth 1.480e-07 9.619e-01 0.000 1.00000
SubstrateSand&Searass -8.516e-08 1.626e+00 0.000 1.00000
Does this mean my data set is just to small to asses detection probability or am I doing something wrong?
NAsomewhere, and you've gotna.action = na.exclude, so your actual sample size is probably tiny. With so little info to use, your model is, unsurprisingly, failing to find patterns and returning a bunch of coefficients of approximately zero. - ulfelder