I have pyspark dataframe where its dimension is (28002528,21) and tried to convert it to pandas dataframe by using the following code line :
pd_df=spark_df.toPandas()
I got this error:
first Part
Py4JJavaError: An error occurred while calling o170.collectToPython.
: org.apache.spark.SparkException: Job aborted due to stage failure: Task 3 in stage 39.0 failed 1 times, most recent failure: Lost task 3.0 in stage 39.0 (TID 89, localhost, executor driver): java.lang.OutOfMemoryError: Java heap space
at java.util.Arrays.copyOf(Arrays.java:3236)
at java.io.ByteArrayOutputStream.grow(ByteArrayOutputStream.java:118)
at java.io.ByteArrayOutputStream.ensureCapacity(ByteArrayOutputStream.java:93)
at java.io.ByteArrayOutputStream.write(ByteArrayOutputStream.java:153)
at net.jpountz.lz4.LZ4BlockOutputStream.flushBufferedData(LZ4BlockOutputStream.java:220)
at net.jpountz.lz4.LZ4BlockOutputStream.write(LZ4BlockOutputStream.java:173)
at java.io.DataOutputStream.write(DataOutputStream.java:107)
at org.apache.spark.sql.catalyst.expressions.UnsafeRow.writeToStream(UnsafeRow.java:552)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:256)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:247)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$25.apply(RDD.scala:830)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$25.apply(RDD.scala:830)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
at org.apache.spark.scheduler.Task.run(Task.scala:109)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:345)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1599)
...
...
Caused by: java.lang.OutOfMemoryError: Java heap space
...
...
Second Part
Exception happened during processing of request from ('127.0.0.1', 56842)
ERROR:py4j.java_gateway:An error occurred while trying to connect to the Java server (127.0.0.1:56657)
Traceback (most recent call last):
...
...
ConnectionResetError: [WinError 10054] An existing connection was forcibly closed by the remote host
During handling of the above exception, another exception occurred:
...
...
and I tried also to take sample of the original pyspark dataframe
smaple_pd_df=spark_df.sample(0.05).toPandas()
I got an error looks like the first part only of the previous error