I'm new to Spark Scala. I have implemented an solution for Dataset validation for multiple columns using UDF rather than going through individual columns in for loop. But i dint know how this is working faster and i have to explain it was the better solution.
The columns for data validation will be received at run time, so we cannot hard-coded the column names in code. And also the comments column needs to be updated with the column name when column value got failed in validation.
Old Code,
def doValidate(data: Dataset[Row], columnArray: Array[String], validValueArrays: Array[String]): Dataset[Row] = {
var ValidDF: Dataset[Row] = data
var i:Int = 0
for (s <- columnArray) {
var list = validValueArrays(i).split(",")
ValidDF = ValidDF.withColumn("comments",when(ValidDF.col(s).isin(list: _*),concat(lit(col("comments")),lit(" Error: Invalid Records in: ") ,lit(s))).otherwise(col("comments")))
i = i + 1
}
return ValidDF;
}
New Code,
def validateColumnValues(data: Dataset[Row], columnArray: Array[String], validValueArrays: Array[String]): Dataset[Row] = {
var ValidDF: Dataset[Row] = data
var checkValues = udf((row: Row, comment: String) => {
var newComment = comment
for (s: Int <- 0 to row.length-1) {
var value = row.get(s)
var list = validValueArrays(s).split(",")
if(!list.contains(value))
{
newComment = newComment + " Error:Invalid Records in: " + columnArray(s) +";"
}
}
newComment
});
ValidDF = ValidDF.withColumn("comments",checkValues(struct(columnArray.head, columnArray.tail: _*),col("comments")))
return ValidDF;
}
columnArray --> Will have list of columns
validValueArrays --> Will have Valid Values Corresponding to column array position. The multiple valid values will be , separated.
I want to know which one better or any other better approach to do it. When i tested new code looks better. And also what is the difference between this two logic's as i read UDF is a black-box for Spark. And in this case the UDF will affect performance in any case?