I'm making a convolutional network to predict 3 class of images, Cats, Dogs & People. I trained and trained it, but then when I pass a cat image to predict it always gives the wrong output. I tried other pictures of cats, but the result doesn't change. With people and dogs it has no problem, just with cats.
cnn = Sequential()
#------------------- Convolução e Pooling
cnn.add(Conv2D(32, (3, 3), input_shape = (64, 64, 3), activation = 'relu'))
cnn.add(Dropout(0.5))
cnn.add(MaxPooling2D(pool_size = (2, 2)))
cnn.add(Conv2D(32, (3, 3), activation = 'relu'))
cnn.add(Dropout(0.5))
cnn.add(MaxPooling2D(pool_size = (2, 2)))
cnn.add(Conv2D(64, (3, 3), activation = 'relu'))
cnn.add(MaxPooling2D(pool_size = (2, 2)))
cnn.add(Conv2D(64, (3, 3), activation = 'relu'))
cnn.add(Dropout(0.5))
cnn.add(MaxPooling2D(pool_size = (2, 2)))
#Full connection
cnn.add(Flatten())
cnn.add(Dense(units = 128, activation = 'relu'))
cnn.add(Dense(units = 4, activation = 'softmax'))
# Compiling the CNN
cnn.compile(optimizer = OPTIMIZER, loss = 'categorical_crossentropy', metrics = ['accuracy'])
filepath="LPT-{epoch:02d}-{loss:.4f}.h5"
checkpoint = ModelCheckpoint(filepath, monitor='loss', verbose=1, save_best_only=True, mode='min')
callbacks_list = [checkpoint]
12000 train images - 3000 test images
train_datagen = ImageDataGenerator(rescale = 1./255,
shear_range = 0.2,
zoom_range = 0.2,
horizontal_flip = True)
test_datagen = ImageDataGenerator(rescale = 1./255)
training_set = train_datagen.flow_from_directory('data/train',
target_size = tgt_size,
batch_size = batch_size,
class_mode = 'categorical')
test_set = test_datagen.flow_from_directory('data/test',
target_size = tgt_size,
batch_size = batch_size,
class_mode = 'categorical')
cnn.fit_generator(training_set,
#steps_per_epoch = 12000,
steps_per_epoch = nb_train_samples // batch_size,
epochs = EPOCHS,
verbose = VERBOSE,
validation_data = test_set,
validation_steps = nb_validation_samples // batch_size,
callbacks = callbacks_list)
My best training result:
loss: 0.6410 - acc: 0.7289 - val_loss: 0.6308 - val_acc: 0.7293
Class indices:
{'.ipynb_checkpoints': 0, 'cats': 1, 'dogs':2, 'person':3}
(I can't remove that ipynb folder)
Prediction:
pred1 = 'single_prediction/ct.jpg'
pred2 = 'single_prediction/ps.jpg'
pred3 = 'data/single_prediction/dg.jpg'
test_img = image.load_img(pred1, target_size = tgt_size)
test_img = image.img_to_array(test_img)
test_img = np.expand_dims(test_img, axis = 0)
pred = new_model.predict(test_img)
print(pred)
if pred[0][1] == 1:
print('It is a cat!')
elif pred[0][2] == 1:
print('It is a dog!')
elif pred[0][3] == 1:
print('It is a Person!')
And the output for a cat image:
[[0.000000e+00 0.000000e+00 8.265931e-34 1.000000e+00]]
I already tried: Change the number of layers (added and removed), increase the epochs, decrease the batch... I also tried using np.argmax(). Can someone please give me a light here?
UPDATE: I removed the jupyter notebook's hidden folder with the command shutil.rmtree() and trained for about 40 epochs until it stopped improving. At last, I rescaled the prediction image and got it right.
test_img = image.img_to_array(test_img)/255
Thanks for all the help!