I have two xts objects.
The first one "stocks_purchase_dates" contains the opening dates and purchase prices of 4 stocks.
stocks_purchase_dates
stock1 stock2 stock3 stock4
2018-03-19 NA NA NA 165.78
2018-03-21 NA 36.1 NA NA
2018-03-23 23 NA NA NA
2018-03-26 NA NA 48.81 NA
The second one "stocks_prices_mar15_mar28" contains the prices of the 4 stocks for the period March 15 - March 28, 2018.
stocks_prices_mar15_mar28
stock1 stock2 stock3 stock4
2018-03-15 23.30 44.28 54.75 177.34
2018-03-16 23.06 45.12 55.10 176.72
2018-03-19 23.31 44.44 54.31 174.02
2018-03-20 23.75 44.82 54.06 173.96
2018-03-21 23.92 43.19 53.91 170.02
2018-03-22 23.47 41.27 51.68 167.61
2018-03-23 23.43 39.96 49.90 163.73
2018-03-26 24.16 38.27 51.68 171.50
2018-03-27 23.40 37.19 50.10 167.11
2018-03-28 23.27 36.99 50.94 165.26
In "stocks_prices_mar15_mar28", I want to replace the values of each stock before the opening date (given in "stocks_purchase_dates") with 0s.
One possible solution is to replace by column and dates:
stocks_prices_mar15_mar28[,"stock1"]["/2018-03-22", ] <- 0
stocks_prices_mar15_mar28[,"stock2"]["/2018-03-20", ] <- 0
stocks_prices_mar15_mar28[,"stock3"]["/2018-03-25", ] <- 0
stocks_prices_mar15_mar28[,"stock4"]["/2018-03-18", ] <- 0
The output is:
stocks_prices_mar15_mar28
stock1 stock2 stock3 stock4
2018-03-15 0.00 0.00 0.00 0.00
2018-03-16 0.00 0.00 0.00 0.00
2018-03-19 0.00 0.00 0.00 165.78
2018-03-20 0.00 0.00 0.00 173.96
2018-03-21 0.00 36.10 0.00 170.02
2018-03-22 0.00 41.27 0.00 167.61
2018-03-23 23.00 39.96 0.00 163.73
2018-03-26 24.16 38.27 48.81 171.50
2018-03-27 23.40 37.19 50.10 167.11
2018-03-28 23.27 36.99 50.94 165.26
It works, but if we have a lot more stocks and opening dates it will become hardwork and complicated.
Is there any way to accomplish the task more efficiently, for example with apply or for loop or a function from the purrr package?