I was trying to implement a Matrix.class to learn some Java.
Right now, I have some difficulties with a method that should return the matrix after Gaussian elimination which will be used to find the inverse of a matrix later on.
Here is what I came up with so far:
public Matrix gaussianElimination() {
Matrix inv = this.clone();
int i = 0;
int j = 0;
while (i<inv.getHeight() && j<inv.getWidth()) {
int pivot = i;
for (int k=i+1; k<inv.getHeight(); k++) {
if (Math.abs(inv.getArray()[k][j]) > Math.abs(inv.getArray()[pivot][j])) {
pivot = k;
}
}
if (inv.getArray()[pivot][j] != 0) {
inv = inv.swapRow(i, pivot);
double div = inv.getArray()[i][j];
for (double value : inv.getArray()[i]) {
value = value/div;
}
for (int u=i+1; u < inv.getHeight(); u++) {
double mult = inv.getArray()[u][j];
for (int l=0; l<inv.getWidth(); l++) {
inv.getArray()[u][l] = mult * inv.getArray()[i][l];
}
}
}
j++;
i++;
}
return inv;
}
Whereas the getArray() function returns the double[][] of the matrix, getHeight() and getWidth() return inv.length and inv[0].length respectably.
I followed the pseudocode of this wikipedia page to implement the algorithm.
The method returns a matrix with line of the first pivot element on top but does not calculate the lower rows correctly.
For instance:
A
0.2635522849474877 0.10001114673002853 0.442971040143471
0.2986277338922876 0.7517642579959294 0.09150190333830721
0.8913610667753092 0.8898546572478708 0.25592546060133237
Inv
0.8913610667753092 0.8898546572478708 0.25592546060133237
0.26618513545092265 0.26573527978742995 0.07642644034471581
0.062426597261833985 0.06232109565941264 0.017923775508624545
I would be very thankful for any help as I can't find a solution. I've probably mixed a pointer somewhere or implemented the algorithm wrong.
Matrix
class. – michal.kreuzman