I'm interested in using Isabelle/Isar for writing proofs which are both human-readable and machine checked, and I am looking to improve my style and streamline my proofs.
prog-prove has the following exercise:
Exercise 4.6. Define a recursive function elems :: 'a list ⇒ 'a set
and prove x ∈ elems xs ⟹ ∃ ys zs. xs = ys @ x # zs ∧ x ∉ elems ys
.
Mimicking something similar to what I would write with pen and paper, my solution is
fun elems :: "'a list ⇒ 'a set" where
"elems [] = {}" |
"elems (x # xs) = {x} ∪ elems xs"
fun takeUntil :: "('a ⇒ bool) ⇒ 'a list ⇒ 'a list" where
"takeUntil f [] = []" |
"takeUntil f (x # xs) = (case (f x) of False ⇒ x # takeUntil f xs | True ⇒ [])"
theorem "x ∈ elems xs ⟹ ∃ ys zs. xs = ys @ x # zs ∧ x ∉ elems ys"
proof -
assume 1: "x ∈ elems xs"
let ?ys = "takeUntil (λ z. z = x) xs"
let ?zs = "drop (length ?ys + 1) xs"
have "xs = ?ys @ x # ?zs ∧ x ∉ elems ?ys"
proof
have 2: "x ∉ elems ?ys"
proof (induction xs)
case Nil
thus ?case by simp
next
case (Cons a xs)
thus ?case
proof -
{
assume "a = x"
hence "takeUntil (λz. z = x) (a # xs) = []" by simp
hence A: ?thesis by simp
}
note eq = this
{
assume "a ≠ x"
hence "takeUntil (λz. z = x) (a # xs) = a # takeUntil (λz. z = x) xs" by simp
hence ?thesis using Cons.IH by auto
}
note noteq = this
have "a = x ∨ a ≠ x" by simp
thus ?thesis using eq noteq by blast
qed
qed
from 1 have "xs = ?ys @ x # ?zs"
proof (induction xs)
case Nil
hence False by simp
thus ?case by simp
next
case (Cons a xs)
{
assume 1: "a = x"
hence 2: "takeUntil (λz. z = x) (a # xs) = []" by simp
hence "length (takeUntil (λz. z = x) (a # xs)) + 1 = 1" by simp
hence 3: "drop (length (takeUntil (λz. z = x) (a # xs)) + 1) (a # xs) = xs" by simp
from 1 2 3 have ?case by simp
}
note eq = this
{
assume 1: "a ≠ x"
with Cons.prems have "x ∈ elems xs" by simp
with Cons.IH
have IH: "xs = takeUntil (λz. z = x) xs @ x # drop (length (takeUntil (λz. z = x) xs) + 1) xs" by simp
from 1 have 2: "takeUntil (λz. z = x) (a # xs) = a # takeUntil (λz. z = x) (xs)" by simp
from 1 have "drop (length (takeUntil (λz. z = x) (a # xs)) + 1) (a # xs) = drop (length (takeUntil (λz. z = x) xs) + 1) xs" by simp
hence ?case using IH 2 by simp
}
note noteq = this
have "a = x ∨ a ≠ x" by simp
thus ?case using eq noteq by blast
qed
with 2 have 3: ?thesis by blast
thus "xs = takeUntil (λz. z = x) xs @ x # drop (length (takeUntil (λz. z = x) xs) + 1) xs" by simp
from 3 show "x ∉ elems (takeUntil (λz. z = x) xs)" by simp
qed
thus ?thesis by blast
qed
but it seems rather long. In particular, I think invoking law of excluded middle here is cumbersome, and I feel like there ought to be some convenient schematic variable like ?goal
which can refer to the current goal or something.
How can I make this proof shorter without sacrificing clarity?